引用本文:陈从颜, 宋文忠.一类二阶时延神经网络的分岔分析和控制[J].控制理论与应用,2003,20(1):45~48.[点击复制]
CHEN Cong-yan, SONG Wen-zhong.Bifurcation analysis and control of delayed neural network model with two-neurons[J].Control Theory and Technology,2003,20(1):45~48.[点击复制]
一类二阶时延神经网络的分岔分析和控制
Bifurcation analysis and control of delayed neural network model with two-neurons
摘要点击 1717  全文点击 1121  投稿时间:2000-06-20  修订日期:2001-05-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2003.1.009
  2003,20(1):45-48
中文关键词  时延神经网络  分岔控制  极限环控制
英文关键词  time delay neural networks  bifurcation control  amplitude control
基金项目  
作者单位E-mail
陈从颜, 宋文忠 东南大学 自动化研究所,江苏南京 210096 chency@seucy.edu.cn 
中文摘要
      讨论了一类二阶时延网络系统的非线性特性,应用线性化稳定性和分岔理论,提出了该系统从稳定到分岔的条件.结论指出利用延迟时间可以进行分岔控制、极限环幅值控制等,并给出了仿真的具体实例.
英文摘要
      The nonlinear behavior in a delayed neural network model with two neurons is investigated. Conditions from stability to bifurcation of the model are presented by applying the linear stability theory. The analytical mechanism for the beginning of cyclic behavior is based on a Hopf-type bifurcation theory. The bifurcation and amplitude of the bifurcated solution are proved to be controlled by utilizing bifurcation stability conefficients can control bifurcation. An example is given and numerical simulations are performed to illustrate the results.