引用本文:祖家奎,戴冠中,郭淳生,卢京潮.基于聚类和SVD算法的模糊逻辑系统结构辨识[J].控制理论与应用,2003,20(4):615~618.[点击复制]
ZU Jia-kui,DAI Guan-zhong,ZHAO Chun-sheng,LU Jing-chao.Structure identification of fuzzy logic system based on clustering and SVD algorithm[J].Control Theory and Technology,2003,20(4):615~618.[点击复制]
基于聚类和SVD算法的模糊逻辑系统结构辨识
Structure identification of fuzzy logic system based on clustering and SVD algorithm
摘要点击 1882  全文点击 2051  投稿时间:2001-04-23  修订日期:2002-03-18
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2003.4.030
  2003,20(4):615-618
中文关键词  减法聚类  奇异值分解  模糊逻辑系统  结构辨识
英文关键词  subtraction clustering  singular value decomposition (SVD)  fuzzy logic system  structure identification
基金项目  
作者单位E-mail
祖家奎 南京航空航天大学 超声电机研究中心, 江苏 南京 210016
西北工业大学 自动控制系, 陕西 西安 710072 
gao@xuzhou.net 
戴冠中 西北工业大学 自动控制系, 陕西 西安 710072  
郭淳生 南京航空航天大学 超声电机研究中心, 江苏 南京 210016  
卢京潮 西北工业大学 自动控制系, 陕西 西安 710072  
中文摘要
      为了研究模糊逻辑系统新的结构辨识方法, 提出采用基于山峰函数的减法聚类算法构造模糊逻辑系统的初始结构, 并利用奇异值分解(SVD)算法分析了模糊规则与奇异值、累积贡献率以及索引向量的关系, 从而实现了模糊逻辑结构的优化. 最后, 对该算法的可行性和有效性进行了仿真验证和性能比较, 取得了较好的效果.
英文摘要
      Aimed to explore the new algorithms of structure identification for fuzzy logic systems, a substration clustering algorithm based on mountain functions to set up the initial fuzzy logic structure was used, and singular value decomposition (SVD) was adopted to analyze the relationships between fuzzy rules and singular values, cumulative contribution ratios, index vectors. Meanwhile, the optimized structure of fuzzy model was obtained. Finally, simulations and performance comparison show that the optimized algorithm was feasible and effective.