引用本文:章 辉,孙优贤.线性多变量控制系统的干扰抑制性能极限:信息论方法[J].控制理论与应用,2004,21(3):357~361.[点击复制]
ZHANG Hui, SUN You-xian.Performance limits of disturbance rejection in linear multivariable control systems: information theoretic approaches[J].Control Theory and Technology,2004,21(3):357~361.[点击复制]
线性多变量控制系统的干扰抑制性能极限:信息论方法
Performance limits of disturbance rejection in linear multivariable control systems: information theoretic approaches
摘要点击 1675  全文点击 1626  投稿时间:2002-10-28  修订日期:2003-07-19
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2004.3.007
  2004,21(3):357-361
中文关键词  信息率  Bode积分  H  性能极限  线性多变量系统  随机干扰
英文关键词  information rates  Bode integral  H entropy  performance limit  linear multivariable system  stochastic disturbance
基金项目  国家973项目(2002CB312200).
作者单位
章 辉,孙优贤 浙江大学 工业控制技术国家重点实验室, 浙江大学 控制科学与工程系 现代控制工程研究所浙江杭州 310027 
中文摘要
      考察了受随机干扰的线性离散多变量时不变反馈控制系统中的不确定性和信息传输,从信息论的角度阐述了系统干扰抑制的性能极限.讨论中采用熵率和信息率作为系统干扰抑制的性能函数.针对调节问题,利用Bode积分定理将控制系统中的熵率和系统开环不稳定极点结合起来,修正了“变异度守恒定律”;针对跟踪问题,研究高斯系统中干扰与输出间的互信息率和系统闭环传递函数H熵的关系,并在此基础上得出了系统干扰抑制的性能上界.
英文摘要
      By investigating the transmission of uncertainty and information in linear time invariant multivariable control systems disturbed by stationary stochastic processes,performance limits of disturbance rejection were studied within the framework of information theory.Two measures of information and uncertainty,entropy rate and mutual information rate,were employed as performance functions of linear regulation system and linear tracking system,respectively.For linear regulation problem,the entropy rate of system output was computed by using Bode integral formula,then the performance limit of disturbance rejection was formulated in terms of unstable poles of open-loop transfer function,and the'conservation law of variety' was revised.For linear tracking problem,a relation between H∞ entropy of system closed-loop transfer function and mutual information rate of the pair of disturbance and output was deduced by using frequency calculation method of mutual information rate,and an upper bound of disturbance rejection performance in Gaussian systems was derived based on this relation.