引用本文:张阿卜.基于减法聚类和自适应神经模糊推理系统的递阶模糊系统的设计[J].控制理论与应用,2004,21(3):415~418.[点击复制]
ZHANG A-bu.Design of hierarchical fuzzy systems based on subtractive clustering and adaptive neuro-fuzzy inference systems[J].Control Theory and Technology,2004,21(3):415~418.[点击复制]
基于减法聚类和自适应神经模糊推理系统的递阶模糊系统的设计
Design of hierarchical fuzzy systems based on subtractive clustering and adaptive neuro-fuzzy inference systems
摘要点击 1545  全文点击 1714  投稿时间:2002-10-28  修订日期:2003-09-02
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2004,21(3):415-418
中文关键词  递阶模糊系统  减法聚类  输入选择  自适应神经-模糊推理系统(ANFIS)
英文关键词  hierarchical fuzzy system  subtractive clustering  input selection  adaptive neuro-fuzzy inference systems(ANFIS)
基金项目  福建省自然科学基金项目(A0110002).
作者单位
张阿卜 厦门大学 自动化系福建厦门 361005 
中文摘要
      提出了一种设计递阶模糊系统的简易而有效的方法.在得到一个单级模糊系统的基础上,用灵敏度分析法对每一个输入变量的重要性进行排序,从而确定每一级子系统的输入变量.利用减法聚类和自适应神经 模糊推理系统逐级对子系统进行训练.所得到的递阶模糊系统可进一步得到简化.仿真实例证实了设计方法的有效性.
英文摘要
      An easy and effective method to design hierarchical fuzzy systems is presented.The degree of importance of each input variable was obtained using sensitivity analysis method based on a single stage fuzzy model.After ranking of importance of each input variable,input variables of every subsystem of the hierarchical fuzzy system can be determined.Every subsystem was trained from the first stage to the last stage using subtractive clustering and ANFIS (adaptive neuro-fuzzy inference systems).A method to reduce the hierarchical fuzzy system was proposed.The design method was proved to be feasible.