引用本文: | 钟红恩,周凤岐,周 军.大系统的分散能控子空间与分散不能观测子空间[J].控制理论与应用,2004,21(3):419~422.[点击复制] |
ZHONG Hong-en, ZHOU Feng-qi, ZHOU Jun.Decentralized controllable subspace and unobservable subspace of large-scale systems[J].Control Theory and Technology,2004,21(3):419~422.[点击复制] |
|
大系统的分散能控子空间与分散不能观测子空间 |
Decentralized controllable subspace and unobservable subspace of large-scale systems |
摘要点击 1622 全文点击 1440 投稿时间:2002-10-29 修订日期:2003-07-04 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
2004,21(3):419-422 |
中文关键词 分散能控子空间 分散不能观测子空间 分段定常分散控制 |
英文关键词 decentralized controllable subspace decentralzied unobservable subspace piecewise constant decentralized control |
基金项目 西北工业大学博士创新基金项目(5211102-08000G14105). |
|
中文摘要 |
提出了大系统的分散能控子空间和分散不能观测子空间的概念.研究了它们分别与集中控制中的能控子空间和不能观测子空间之间的关系.研究中借用了几何控制理论中的方法.结果表明,分散能控子空间和分散不能观测子空间是集中控制中能控子空间和不能观测子空间在分散控制下的自然推广.利用这两个概念,可以从几何角度研究大系统分散控制的几个问题,比如时变分散控制下的系统镇定问题. |
英文摘要 |
The concepts of decentralized controllable subspace and unobservable subspace are presented.The relations between them and their counterparts in centralized control were explored respectively.An approach similar to the geometric control theory in centralized control was adopted.The result shows that the decentralized controllable subspace and unobservable subspace are the natural generalization of the controllable subspace and unobservable subspace to decentralized control respectively.Based on these concepts,some problem,such as stabilizing of large-scale systems by time-varying decentralized control,can be dealt with easily by a geometric approach. |