引用本文:童 桦, 刘一江, 易理刚.神经网络在线学习补偿自适应控制及其应用[J].控制理论与应用,2004,21(4):579~583.[点击复制]
TONG Hua, LIU Yi-jiang, YI Li-gang.Neural network based on-line learning indemnityadaptive control and its application[J].Control Theory and Technology,2004,21(4):579~583.[点击复制]
神经网络在线学习补偿自适应控制及其应用
Neural network based on-line learning indemnityadaptive control and its application
摘要点击 1744  全文点击 3187  投稿时间:2002-11-11  修订日期:2003-10-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2004,21(4):579-583
中文关键词  小波变换  过程辨识  神经网络控制  补偿控制  电液伺服系统
英文关键词  wavelet transforms  process identification  neural network control  indemnity control  electro_hydraulic servo system
基金项目  湖南省自然科学基金项目(04JJ30006); 湖南大学211工程项目(080016).
作者单位
童 桦, 刘一江, 易理刚 湖南大学 省重点实验室结构损伤诊断中心, 湖南长沙 410082 
中文摘要
      针对电液伺服系统的复杂非线性和不确定性特性,基于反馈误差学习法、小波分析理论并结合面向控制的辨识思想,提出了神经网络在线自学习自适应控制与"参征器"补偿控制相结合的控制方法.该方法将"过程辨识"和"参征器"引入反馈误差学习法的神经网络学习和控制中,控制参数的调整基于被控过程的小波变换结果信息,利用反馈误差学习法实现;"参征器"起监督和补偿控制作用,避免控制器的输出产生振荡或进入饱和状态.应用研究结果证明:该方法避免了采用直接反馈误差法可能造成的饱和和过调整问题;有效地提高了系统的稳定性、鲁棒性、控制精度和
英文摘要
      With respect to the complex nonlinearities and uncertainties of electro_hydraulic servo system,a method of neural network on_line self_learning adaptive control and OSC(oscillatory surge controller) compensating control is introduced based on the feedback_error_learning and wavelets analytic theory combined with identification idea.By introducing process_identification and OSC in neural network learning and controlling with feedback error learning method, the control parameters can be regulated on_line by using the measured input/output data of wavelets and OSC for supervising and indemnity control, so as to prevent the oscillation and saturation of the controller output. The application results show that the method prevents the saturation and the overadjustment of using direct feedback error learning method, and effectively enhance stability, robustness, control precision and adaptive ability of the system. The method can effectively deal with the complex nonlinearities and uncertainties which are ubiquitous in industry system and its control effect is superior to that of the feedback error learning method. It provides a new way which is effective and feasible for intelligent control of nonlinear and uncertain systems.