引用本文:汪秉文, 沈艳军, 何统洲.多输出神经元模型的多层前向神经网络及其应用[J].控制理论与应用,2004,21(4):611~613.[点击复制]
WANG Bing-wen, SHEN Yan-jun, HE Tong-zhou.Multilayer feedforward neural networkswith multioutput neural model and its application[J].Control Theory and Technology,2004,21(4):611~613.[点击复制]
多输出神经元模型的多层前向神经网络及其应用
Multilayer feedforward neural networkswith multioutput neural model and its application
摘要点击 1586  全文点击 1900  投稿时间:2003-02-19  修订日期:2003-06-26
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2004.4.026
  2004,21(4):611-613
中文关键词  神经网络  神经元模型  递推最小二乘算法  多输出神经元模型
英文关键词  neural networks  neural model  recurrent least square(RLS)  multi_output neural model
基金项目  
作者单位E-mail
汪秉文, 沈艳军, 何统洲 华中科技大学 控制科学与工程系,湖北武汉 430074
陨阳师范高等专科学校 计算机系,湖北陨阳 442700 
wangbw@public.hb.wh.cn 
中文摘要
      研究了一种新的多输出神经元模型.首先,给出这类模型的一般形式,并将该模型应用于多层前向神经网络;其次,给出了其学习算法,即递推最小二乘算法,最后通过几个模拟实验表明,采用多输出神经元模型的多层前向神经网络,具有结构简单,泛化能力强,收敛速度快,收敛精度高等特点,其性能远远优于激活函数可调模型的多层前向神经网络.
英文摘要
      A multi_output neural model and its general form are presented.The recurrent least square,a learning algorithm,was used to train multilayer feedforward neural networks(MFNN) with this new model.Several simulations demonstrated that MO (multi_output neural)_MFNN has simple architecture, excellent generalization capacity, fast speed of convergence and improved accuracy. Its performance is superior to TAF (tunable activation function) MFNN.