引用本文:郅跃茹, 朱维彰, 诸 静.链式数据重组与神经网络在经济预测中的应用[J].控制理论与应用,2004,21(4):643~645.[点击复制]
ZHI Yue-ru, ZHU Wei-zhang, ZHU Jing.Application of the chain style data recombination methodand neural networks in macroeconomic forecast[J].Control Theory and Technology,2004,21(4):643~645.[点击复制]
链式数据重组与神经网络在经济预测中的应用
Application of the chain style data recombination methodand neural networks in macroeconomic forecast
摘要点击 1560  全文点击 1350  投稿时间:2002-03-25  修订日期:2003-09-02
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2004,21(4):643-645
中文关键词  宏观经济预测  数据重组  神经网络训练
英文关键词  macroeconomic forecast  data recombination  neural networks training
基金项目  
作者单位E-mail
郅跃茹, 朱维彰, 诸 静 浙江大学 电气工程学院,浙江杭州 310027
杭州电子工业学院 自动化系,浙江杭州 310037 
chinayrzhi@hotmail.com 
中文摘要
      建立经济模型和基于模型对宏观经济进行预测,是经济运行质量评价、仿真、制定发展规划等所必不可少的.针对宏观经济预测的特殊性:样本少、时变性,提出了反向传播(BP)神经网络的链式数据重组训练方法,并用于实际经济预测.和原数据用于预测的结果相比,达到了较高的预测精度.同时,解决了BP神经网络难以确定隐结点数的问题.
英文摘要
      It is necessary to model predict and model the economic system and for evalusating economic circulation,simulation,and making development programs.Based on the characteristics of the macroeconomic forecast,such as small data sets and time_varying,a chain_style data recombination method is presented,which is used for the back_propagation (BP) neural networks training.This method was applied to real macroeconomic forecast,and achieved the higher forecasting precision than the original data sets.It also solves the problem how to decide the hidden node numbers for the BP neural networks.