引用本文:邹 恩,李祥飞,张泰山.模糊神经网络的混沌优化算法设计(英文)[J].控制理论与应用,2005,22(4):578~582.[点击复制]
ZOUEn,LI Xiang-fei,ZHANG Tai-shan.Chaos optimization algorithm design for fuzzy neural network[J].Control Theory and Technology,2005,22(4):578~582.[点击复制]
模糊神经网络的混沌优化算法设计(英文)
Chaos optimization algorithm design for fuzzy neural network
摘要点击 1624  全文点击 685  投稿时间:2002-12-03  修订日期:2004-12-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2005,22(4):578-582
中文关键词  模糊神经网络  优化  混沌变量  梯度下降法
英文关键词  fuzzy neural network  optimization  chaotic variables  gradient descent algorithm
基金项目  湖南省自然科学基金资助项目(01JJY3029).
作者单位
邹 恩,李祥飞,张泰山 株洲工学院电气工程系,湖南株洲412008
中南大学信息科学与工程学院,湖南长沙410083 
中文摘要
      提出了一种基于混沌变量的多层模糊神经网络优化算法设计.离线优化部分采用混沌算法,将混沌变量引入到模糊神经网络结构和参数的优化搜索中,使整个网络处于动态混沌状态,根据性能指标在动态模糊神经网络中寻找较优的网络结构和参数.在线优化部分采用梯度下降法,把混沌搜索后得到的参数全局次优值作为梯度下降搜索的初始值,进一步调整模糊神经网络的参数,实现混沌粗搜索和梯度下降细搜索相结合的优化目的,能较快地找到全局最优解.最后对二阶延迟系统进行仿真,结果表明混沌优化方法控制精度高、超调小、响应快和鲁棒性强.
英文摘要
      An optimization algorithmdesign based on chaotic variable is proposed for multilayer fuzzy neural network.Off-line optimization uses chaos algorithmand chaos variables are applied to searchfor networkstructure and parameters ,in which thenetworkis in dynamic chaos state .An approximate optimal network structure and parameters are found from dynamic networkaccordingto performance index.On-line optimization uses gradient descent algorithmand the initial values of gradient descentsearching are parameters approximately global optimal values fromchaos searching,the parameters of fuzzy neural network are fur-ther adjusted.The global optimal values of networkare searched quickly by means of combination of chaos global searchingand gra-dient descent local searching.Finally,second order delaysystemis simulated,andthe results showthat the chaos optimal control is ofhigh precision,small overshoot ,fast response and good robustness .