引用本文:廖伍代, 蹇继贵, 廖晓昕.噪声环境中时滞双向联想记忆神经网络指数稳定[J].控制理论与应用,2005,22(6):987~990.[点击复制]
LIAO Wu-dai,JIAN Ji-gui,LIAO Xiao-xin.Exponential stability of time-delay bi-direction associated memory neural networks in noisy environment[J].Control Theory and Technology,2005,22(6):987~990.[点击复制]
噪声环境中时滞双向联想记忆神经网络指数稳定
Exponential stability of time-delay bi-direction associated memory neural networks in noisy environment
摘要点击 1833  全文点击 1247  投稿时间:2004-06-07  修订日期:2005-06-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2005.6.025
  2005,22(6):987-990
中文关键词  双向联想记忆神经网络  随机系统  Ito^公式  M-矩阵  概率1指数渐近稳定
英文关键词  bi-direction associated memory neural networks  stochastic system  It formula  M-matrix  exponential stability in probability one
基金项目  国家自然科学基金资助项目(60274007,60474001).
作者单位
廖伍代, 蹇继贵, 廖晓昕 中原工学院 电子信息学院,河南郑州450007
华中科技大学 控制科学与工程系,湖北武汉430074 
中文摘要
      任何系统实际上都是在噪声环境中进行工作的.对处在噪声强度已知的噪声环境下双向联想记忆(BAM)神经网络,其平衡点具有指数渐近稳定性是网络进行异联想记忆的基础.构造一个适当的Lyapunov函数,应用Ito^公式、M矩阵等工具讨论了在噪声环境下具有时滞的BAM神经网络概率1指数渐近稳定,得到了指数稳定的代数判据和两个推论,此判据只需验证仅由网络参数构成的矩阵是M矩阵即可,给网络设计带来方便.本文所得结果包括相关文献中确定性结果作为特例.
英文摘要
      In reality,any system works in noisy environment.For bi-direction associated memory(BAM) neural networks in noisy environment,the disturbance intensity is estimated.It is the chief problem that the equilibrium of BAM neural networks should be exponentially stable.By constructing an appropriate Lyapunov function and by using It formula and M-matrix as analytic tools,the problem of exponential stability in probability one about noisy time-delay BAM neural networks is discussed,and some algebraic criteria are obtained.By those criteria,it is only necessary to verify the matrix to be M-matrix of the system's parameters,resulting in convenience in system design.The conclusions include those obtained in relevant literature as special cases.