引用本文: | 郑春红,焦李成,丁爱玲.基于启发式遗传算法的SVM模型自动选择[J].控制理论与应用,2006,23(2):187~192.[点击复制] |
ZHENG Chun-hong,JIAO Li-cheng,DING Ai-ling.Automatic model selection for support vector machines using heuristic genetic algorithm[J].Control Theory and Technology,2006,23(2):187~192.[点击复制] |
|
基于启发式遗传算法的SVM模型自动选择 |
Automatic model selection for support vector machines using heuristic genetic algorithm |
摘要点击 1436 全文点击 833 投稿时间:2005-02-01 修订日期:2005-06-22 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
2006,23(2):187-192 |
中文关键词 支撑矢量机(SVM) 模型选择 模型自动选择 遗传算法 |
英文关键词 support vector machine model selection automatic model selection genetic algorithm |
基金项目 国家自然科学基金资助项目(60133010,60372047);西安电子科技大学博士点基金资助项目;西安电子科技大学青年工作站项目资助项目 |
|
中文摘要 |
支撑矢量机(SVM)模型的自动选择是其实际应用的关键.常用的基于穷举搜索的留一法(LOO)很繁杂且效率很低.到目前为止,大多数的算法并不能有效地实现模型自动选择.本文利用实值编码的启发式遗传算法实现基于高斯核函数的SVM模型自动选择.在重点分析了SVM超参数对其性能的影响和两种SVM性能估计的基础上,确定了合适的遗传算法适应度函数.人造数据及实际数据的仿真结果表明了所提方法的可行性和高效性. |
英文摘要 |
Motivated by the facts that automatic model selection for support vector machine(SVM) is an important issue to make it practically useful,and the commonly-used leave-one-out(LOO) method is complex and time consuming,we proposed an effective strategy for automatic model selection for SVM with Gauss kernel by using a heuristic real-coded genetic algorithm(GA).Based on the extensive analysis of the effects of the hyper-parameters on the generalization performance and two estimates of SVM,the appropriate fitness function for GA operation is determined.Simulations are performed on both artificial data and real data to demonstrate the effectiveness and efficiency of the proposed approach.The significance of the proposed method is its easy implementation and better performances in comparison with the commonly used loo method. |
|
|
|
|
|