引用本文:刘涵,刘丁.基于模糊sigmoid核的支持向量机回归建模[J].控制理论与应用,2006,23(2):204~208.[点击复制]
LIU Han,LIU Ding.Support vector regression based on fuzzy sigmoid kernel[J].Control Theory and Technology,2006,23(2):204~208.[点击复制]
基于模糊sigmoid核的支持向量机回归建模
Support vector regression based on fuzzy sigmoid kernel
摘要点击 3246  全文点击 1358  投稿时间:2005-01-27  修订日期:2005-07-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2006.2.008
  2006,23(2):204-208
中文关键词  支持向量回归  sigmoid核函数  模糊逻辑  混沌时间序列预测  图像滤波器
英文关键词  support vector regression  sigmoid kernels function  fuzzy logic  chaotic time series prediction  image filter
基金项目  陕西省教育厅专项科研计划资助项目(05JK267); 西安理工大学中青年科技创新计划资助项目
作者单位
刘涵,刘丁 西安理工大学自动化与信息工程学院,陕西西安710048 
中文摘要
      支持向量机中对核函数的要求为对称的半正定矩阵.来自于神经网络的sigmoid核函数在其参数满足一定条件时才成为半正定矩阵,但是这种核函数在SVM中却有很多成功的应用.本文将sigmoid核函数与模糊逻辑相结合并使其糊化,从而简化了SVM的计算并便于用硬件实现.通过对混沌时间序列预测以及图像去噪滤波器两个实例的实验研究发现,使用模糊sigmoid核函数可以使SVM回归建模在损失较小精度的代价下,较大地降低平均CPU执行时间,便于硬件实现.
英文摘要
      In the support vector machines(SVM) framework,kernel function must meet certain requirements to be symmetric and positive semi-definite(PSD) matrix.Although sigmoid function derived from neural network can become a PSD kernel for proper combinations of its free parameters,it has been used in several practical and successful cases.The sigmoid kernel is combined with fuzzy logic methodology first,which makes the computation of SVM simple and of ease implementation in hardware.Experiments for chaotic time series prediction and image filter are also carried out to show that the average CPU time can be decreased markedly in favor of hardware implementation,in spite of small decrease in prediction precision.