引用本文:王林,戴冠中.无标度网络度秩指数的变化范围[J].控制理论与应用,2006,23(4):503~507.[点击复制]
WANG Lin, DAI Guan-zhong .Range of degree-rank exponent of scale-free networks[J].Control Theory and Technology,2006,23(4):503~507.[点击复制]
无标度网络度秩指数的变化范围
Range of degree-rank exponent of scale-free networks
摘要点击 2266  全文点击 766  投稿时间:2004-10-26  修订日期:2005-10-09
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2006.4.002
  2006,23(4):503-507
中文关键词  复杂网络  无标度网络  度分布  度秩指数  网络结构熵
英文关键词  complex network  scale-free network  degree distribution  degree-rank exponent  network structural entropy
基金项目  
作者单位
王林,戴冠中 西安理工大学 自动化学院,陕西 西安710048
西北工业大学 自动化学院,陕西 西安710072 
中文摘要
      实证研究表明,绝大多数复杂网络的结点的度分布服从幂律分布,该幂律分布的幂指数的绝对值(度分布指数)介于2和3之间.然而,至今尚未发现为什么度分布指数介于2和3之间的研究结果.本文证明了度分布指数大于2,从而部分回答了上述问题.为此,本文引进度秩指数,并给出了度秩指数和度分布指数之间的关系.通过对度秩指数与网络结构熵之间的关系的刻画,发现了度秩指数与网络结构熵以及网络规模之间的函数依赖关系,从而最终证明了度秩指数的临界值趋于1,并给出了仿真结果.
英文摘要
      Empirical study shows that most of complex networks are scale-free, and the node degrees of which obey the power-law distribution with the absolute value of the corresponding power exponent (known as degree distribution exponent) lying between 2 and 3. However, there is no research result on why the degree distribution exponent lies between 2 and 3 so far. The authors prove that the degree distribution exponent is greater than 2 and thus partially solve the problem mentioned above. First, the degree-rank exponent is introduced, the relation between the degree-rank exponent and the degree distribution exponent is also given. Through the characterization on the relation between the degree-rank exponent and the network structural entropy, functional dependent relations among the degree-rank exponent, the network structural entropy and the number of nodes of the network are then obtained and the result that the degree-rank exponent approaches one is proved. Finally, simulation results are given to illustrate the theoretical result.