引用本文:王欣,秦斌,阳春华.机组短期负荷环境/经济调度多目标混合优化[J].控制理论与应用,2006,23(5):730~734.[点击复制]
WANG Xin, QIN Bin, YANG Chun-hua .Multi-objective hybrid optimization algorithm for short term environmental/economic generation scheduling[J].Control Theory and Technology,2006,23(5):730~734.[点击复制]
机组短期负荷环境/经济调度多目标混合优化
Multi-objective hybrid optimization algorithm for short term environmental/economic generation scheduling
摘要点击 1461  全文点击 752  投稿时间:2005-02-27  修订日期:2006-02-23
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2006.5.012
  2006,23(5):730-734
中文关键词  环境/经济负荷调度  多目标混合优化  局部搜索  混沌优化
英文关键词  environmental/economic generation scheduling  multi-objective hybrid optimization  local search  chaotic optimization
基金项目  国家自然科学基金资助项目(60574030); 湖南教育厅资助项目(04C718,05C423).
作者单位
王欣,秦斌,阳春华 湖南工业大学电气工程系,湖南株洲412008
中南大学信息科学与工程学院,湖南长沙410083 
中文摘要
      环境/经济短期负荷调度主要由调度周期内的最优机组组合和负荷环境/经济分配组成,本文将变权重多目标进化算法与混沌局部优化相结合形成混合优化算法应用到电站机组环境/经济运行多目标优化问题中,在混合多目标优化算法中采用组合结构基因,其中机组基因用于机组组合全局粗寻优,参数基因用于负荷分配局部优化,基因修正与罚函数结合解决约束问题.通过对优秀个体进行基于线性搜索的混沌局部优化,可加快收敛速度和降低计算时间.实例仿真结果说明所提出的算法能获得较好分布的Pareto优化解.
英文摘要
      Short term environmental/economic generation scheduling (E/EGS) is composed of optimal unit commitment (UC) and environmental/economic dispatch (ED) in the scheduling period. In this paper the multi-objective hybrid evolutionary algorithm (MHEA) which combines randomly-weighed multi-objective evolutionary algorithm (MEA) with chaotic optimal algorithm (COA) is proposed for the short term generation scheduling problem. In the MHEA, the hierarchical genes are adopted in which the commitment genes are used for global optimization in UC and the parameter genes are used for local optimization in ED, and the constrain problem can be solved by combining genes modification with punishment function method. The chaos local linear search is also applied to good solutions to accelerate the convergence speed of algorithm and reduce the computation time. Finally, the results of a case study demonstrate the capabilities of the proposed approach to generate well-distributed Pareto-optimal solutions of the multi-objective E/EGS problem.