引用本文:王华秋, 廖晓峰.一种并行协同粒子群优化的支持向量机预测模型[J].控制理论与应用,2006,23(6):934~940.[点击复制]
WANG Hua-qiu, LIAO Xiao-feng.Prediction model of support vector machine based on parallel cooperative particle swarm optimization[J].Control Theory and Technology,2006,23(6):934~940.[点击复制]
一种并行协同粒子群优化的支持向量机预测模型
Prediction model of support vector machine based on parallel cooperative particle swarm optimization
摘要点击 1751  全文点击 1533  投稿时间:2005-01-20  修订日期:2006-01-04
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2006.6.016
  2006,23(6):934-940
中文关键词  并行协同粒子群  支持向量机  参数优化  转炉提钒  预测模型
英文关键词  parallel cooperative particle swarm  support vector machine  parameters optimization  converter revanadium  prediction model
基金项目  国家自然科学基金资助项(60271019); 重庆市教委基础研究项目(KJ060614); 重庆市科委攻关项目(20020828).
作者单位
王华秋, 廖晓峰 重庆大学计算机学院, 重庆400044
重庆工学院计算机科学与工程学院, 重庆400050 
中文摘要
      转炉提钒过程是一个非常复杂的多元非线性反应过程, 从统计学和反应机理等角度出发, 难以建立终点控制静态模型. 针对这样的问题, 提出了并行协同粒子群优化的支持向量机预测模型, 不仅克服了支持向量机偏差ε和折中参数C选择的随机性, 而且较好地解决了大数据集的快速并行计算, 缩短了计算时间, 从而有利于连续生产操作. 试验表明, 用该模型预测转炉提钒的冷却剂加入量和吹氧时间, 结果的误差减小, 满足了终点命中率在90%以上的指标, 具有工程实用性.
英文摘要
      Converter re-vanadium is a very complex diverse and nonlinear reaction. From the point of view of statistics and reaction mechanism, it is difficult to build an endpoint control static model. Considering this problem, we presented a prediction model using support vector machine (SVM) based on parallel cooperative particle swarm. This model not only perfectly solves the problem of random selection of SVM regression parameter such as ε and C, but also provides rapid calculation for the problem with large data sets and reduces the computing time. Accordingly the model is beneficial to continuous production. The model was used to predict the quantity of refrigerant and time consumption of oxygen in converter re-vanadium, the results of experiments showed that the errors were reduced and the endpoint hitting ratio reached the target for over ninety percent.