引用本文:陈少白, 谭光兴, 毛宗源.非线性仿射控制系统的C0镇定性[J].控制理论与应用,2006,23(6):1005~1008.[点击复制]
CHEN Shao-bai, TAN Guang-xing, MAO Zong-yuan.C0-stabilizablity of nonlinear control-affine systems[J].Control Theory and Technology,2006,23(6):1005~1008.[点击复制]
非线性仿射控制系统的C0镇定性
C0-stabilizablity of nonlinear control-affine systems
摘要点击 2072  全文点击 1234  投稿时间:2005-04-04  修订日期:2006-01-16
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2006.6.031
  2006,23(6):1005-1008
中文关键词  非线性仿射控制系统  C0镇定  控制Lyapunov函数  非严格控制Lyapunov函数
英文关键词  nonlinear affine control system  C0-stabilizable  control Lyapunov function  non-strict control Lyapunov function
基金项目  
作者单位
陈少白, 谭光兴, 毛宗源 武汉科技大学理学院, 湖北武汉430081
广西工学院管理工程系, 广西柳州545006
华南理工大学自动化科学与工程学院, 广东广州510640 
中文摘要
      通过Lyapunov函数设计反馈控制器使得非线性仿射控制系统全局渐进稳定是一种有效的方法. 为了使得反馈控制器具有连续性, Sontag提出控制Lyapunov函数应具有小控制性, 即要求在原点连续反馈控制器存在, 该条件在实际中无法应用. 针对这一问题本文提出了聚点条件来保证反馈控制器具有连续性, 该条件直接对选择的控制Lyapunov函数进行检验, 并且聚点条件还是必要的; 文章将控制Lyapunov函数的严格不等式放宽为非严格的不等式, 提出非严格控制Lyapunov函数, 利用LaSalle定理得到: 采用满足聚点条件的非严格控制Lyapunov函数来设计连续反馈控制器, 非线性仿射控制系统是全局渐进稳定, 扩大了控制Lyapunov函数的寻找范围; 最后通过对一种带摩擦的弹簧系统进行验证.
英文摘要
      In order to eliminate the difficulty in the design of Lyapunov function proposed by Sontag, the C0-stabilizablity of nonlinear affine control systems is studied in this paper. Firstly, the accumulation point condition is briefly introduced in order to ensure the continuity of the Sontag’s formula. Secondly, the accumulation point condition is also proved to be necessary for the continuity of Sontag’s formula. Thirdly, the strict control Lyapunov function is replaced by non-strict control Lyapunov function in the nonlinear affine control systems. Motivated by LaSalle theorem, the system with nonstrict Lyapunov function which is said to satisfy the accumulation point condition is proved to be C0-stabilizable, the optional range of Lyapunov function is thus extended. Finally, an example of frictional spring system is given to validate this theory.