引用本文:蒋刚.基于模糊支持向量核回归方法的短期峰值负荷预测[J].控制理论与应用,2007,24(6):986~990.[点击复制]
JIANG Gang .Short-term peak load forecasting based on fuzzy support vector kernel regression method[J].Control Theory and Technology,2007,24(6):986~990.[点击复制]
基于模糊支持向量核回归方法的短期峰值负荷预测
Short-term peak load forecasting based on fuzzy support vector kernel regression method
摘要点击 1575  全文点击 946  投稿时间:2005-11-27  修订日期:2006-11-24
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2007.6.024
  2007,24(6):986-990
中文关键词  电力系统  负荷预测  模糊逻辑  支持向量机  核函数
英文关键词  power system  load forcasting  fuzzy logic  support vector machine  kernel function
基金项目  国家自然科学基金资助项目(10576027)
作者单位
蒋刚 西南科技大学制造科学与工程学院, 四川绵阳621010 
中文摘要
      分析了电力系统负荷预测目前采用的方法的不足; 在已有研究成果的基础上, 根据电网负荷的特点进一步完善了基于模糊支持向量的核回归方法; 与目前已有的方法, 如神经网络、卡尔曼滤波、最小绝对值参数估计、结合遗传算法的支持向量机、结合模糊小波技术的支持向量机等进行对比实验, 实验结果展示了几种方法的性能对比, 为该领域的研究提供了参考.
英文摘要
      In view of the disadvantages of current methods for load forecasting in power system, a new algorithm named fuzzy support vector kernel regression method (F-SVKR) is proposed to deal with the problem. Comparison with some conventional methods, such as the artificial neural network, Kalman filtering algorithm, the method of minimizing absolute parameter estimation, the support vector machine and so on, have been performed. Expertmental results show their performance differences and provide some reference information for the further research in this domain.