引用本文:张小刚, 陈华, 章兢, 刘小燕.基于图像反馈的回转窑烧结温度智能预测控制[J].控制理论与应用,2007,24(6):995~998.[点击复制]
ZHANG Xiao-gang, CHEN Hua, ZHANG Jing, LIU Xiao-yan.Intelligent predictive control strategy applied to sintering temperature in rotary kiln based on image feedback[J].Control Theory and Technology,2007,24(6):995~998.[点击复制]
基于图像反馈的回转窑烧结温度智能预测控制
Intelligent predictive control strategy applied to sintering temperature in rotary kiln based on image feedback
摘要点击 1789  全文点击 1914  投稿时间:2005-04-25  修订日期:2006-11-10
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2007.6.026
  2007,24(6):995-998
中文关键词  预测控制  回转窑  过程控制  图像处理  遗传算法  神经网络
英文关键词  predictive control  rotary kiln  process control  image processing  genetic algorithm  neural network
基金项目  湖南省自然科学基金资助项目(04JJ3011); 湖南省重点科研项目(05GK2003); 国家自然科学基金重点资助项目(60634020); 国家自然科学基金资助项目(50704016)
作者单位
张小刚, 陈华, 章兢, 刘小燕 湖南大学电气与信息工程学院, 湖南长沙410082
湖南大学计算机与通信学院, 湖南长沙410082 
中文摘要
      利用火焰图像作为回转窑烧结温度的反馈信号参与闭环预测控制, 融合现场热工信号, 设计了烧结温度的RBF网络预测模型, 并利用遗传算法进行滚动优化, 现场运行结果表明该方法可在正常工况下对烧结温度进行稳定控制.
英文摘要
      The sintering temperature in rotary kiln is measured through image processing algorithm as feedback of its predictive control. The predictive model based on RBF network is designed by the image and other process data optimized by genetic algorithm. The final results of application at an alumina sintering kiln show that this intelligent predictive control strategy can achieve higher stability in normal condition.