引用本文: | 廖迎新, 吴敏, 佘锦华, 曹卫华.基于HPSO的钢坯加热过程炉温优化设定[J].控制理论与应用,2007,24(6):1010~1014.[点击复制] |
LIAO Ying-xin, WU Min, SHE Jin-hua, CAOWei-hua.Hybrid particle swarm optimization of temperature settings of billet-reheating process[J].Control Theory and Technology,2007,24(6):1010~1014.[点击复制] |
|
基于HPSO的钢坯加热过程炉温优化设定 |
Hybrid particle swarm optimization of temperature settings of billet-reheating process |
摘要点击 1523 全文点击 1296 投稿时间:2006-11-09 修订日期:2007-04-29 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2007.6.029 |
2007,24(6):1010-1014 |
中文关键词 加热炉 稳态优化 混合粒子群优化 免疫 克隆 |
英文关键词 reheating furnace steady-state optimization hybrid particle swarm optimization immunity cloning |
基金项目 国家杰出青年科学基金资助项目(60425310); 国家863计划项目(2006AA04Z172); 湖南省科技计划项目(04FJ3029). |
|
中文摘要 |
针对一种蓄热推钢式加热炉三个加热区的炉温稳态优化问题, 本文提出了一种混合粒子群优化(HPSO)方法. 首先, 基于钢坯导热偏微分方程和边界条件, 建立钢坯温度预报模型. 然后, 采用HPSO算法确定最佳稳态炉温,即炉温控制的参考输入. 该方法利用混沌机制产生初始种群, 通过免疫和克隆来提高粒子群优化(PSO)算法的全局搜索能力和搜索精度. |
英文摘要 |
A hybrid particle swarm optimization (HPSO) approach is presented to solve the problem of optimizing the steady-state temperatures of the three zones of a billet reheating furnace. Firstly, a model for predicting billet temperature is constructed based on a heat transfer equation and its boundary conditions. Then, HPSO is used to determine the optimal steady-state temperatures, which are reference inputs for the control of furnace temperature. This approach uses a chaos mechanism to create the initial population, and adopts immunity and cloning to improve the global search capability and search precision of particle swarm optimization. |
|
|
|
|
|