引用本文:袁小芳, 王耀南, 吴亮红.发电机组的一种多模型自学习控制[J].控制理论与应用,2008,25(1):47~52.[点击复制]
YUAN Xiao-fang, WANG Yao-nan, WU Liang-hong.A multi-model self-learning control system for synchronous generator[J].Control Theory and Technology,2008,25(1):47~52.[点击复制]
发电机组的一种多模型自学习控制
A multi-model self-learning control system for synchronous generator
摘要点击 8491  全文点击 15613  投稿时间:2006-03-23  修订日期:2007-03-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2008.1.008
  2008,25(1):47-52
中文关键词  模糊控制  学习系统  支持向量机  多模型  发电机组
英文关键词  fuzzy control  learning systems  support vector machines(SVM)  multiple models  generator
基金项目  国家自然科学基金资助项目(60775047); “863”计划资助项目(2007AA04Z244).
作者单位
袁小芳, 王耀南, 吴亮红 湖南大学电气与信息工程学院, 湖南长沙410082 
中文摘要
      针对发电机组励磁与汽门的综合控制, 研究了一种多模型自学习控制(MMSC). 首先, 建立机组不同工况下的样本数据并归纳模糊控制器(FLC)规则, 随后采用模糊聚类算法将样本约简为典型工况, 并得到对应于典型工况的模型库与控制器库. MMSC的控制量为多个FLC输出的加权集成, 而加权系数由模型匹配程度决定. 采用学习能力强的支持向量机来实现FLC的自学习和在线优化. 仿真实验验证了MMSC的控制性能和效果.
英文摘要
      As excitation and turbine control of generators confront with challenges of strong nonlinear characteristics and varying operation points, this paper proposed a multiple models self-learning control(MMSC). Firstly, fuzzy control rules for generators at various operation points were derived from operation samples. Then fuzzy clustering algorithm was employed to reduce the models at various operation points to a multi-model bank with corresponding fuzzy logic controller (FLC). Here the control signal of MMSC was simply the weighted sum of FLC, which were decided by their matching degree of multiple models based on fuzzy logic. Support vector machines (SVM), a power machine learning algorithm, were applied to the self-learning of FLC. Simulation results showed the desirable performance and control capability of the proposed MMSC.