引用本文:巩敦卫, 张勇, 张建化, 周勇.新型粒子群优化算法[J].控制理论与应用,2008,25(1):111~114.[点击复制]
GONG Dun-wei, ZHANG Yong, ZHANG Jian-hua, ZHOU Yong.Novel particle swarm optimization algorithm[J].Control Theory and Technology,2008,25(1):111~114.[点击复制]
新型粒子群优化算法
Novel particle swarm optimization algorithm
摘要点击 3193  全文点击 2256  投稿时间:2005-09-19  修订日期:2006-11-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2008.1.020
  2008,25(1):111-114
中文关键词  粒子群优化  粒子更新  邻域  函数优化
英文关键词  particle swarm optimization  update of a particle  neighbor  function optimization
基金项目  国家自然科学基金资助项目(60304016,60775044); 教育部新世纪优秀人才支持计划资助项目.
作者单位
巩敦卫, 张勇, 张建化, 周勇 中国矿业大学信息与电气工程学院, 江苏徐州221008 
中文摘要
      现有粒子群优化存在局部收敛、对可调参数敏感等缺点. 基于此, 本文提出一种新型粒子群优化算法. 首先, 通过分析社会个体对其环境的认知规律, 简化粒子更新公式使粒子位置的更新仅与粒子自身速度及其邻域内最优粒子位置相关. 其次, 基于粒子速度划分提出一种优势粒子速度小概率变异、劣势速度随机赋值方法. 最后, 通过优化4个典型测试函数验证了本文所提方法在优化解的质量、算法收敛速度及鲁棒性等方面的优异性能.
英文摘要
      Existing particle swarm optimization has disadvantages of local convergence and being sensitive to adjustable parameters. A novel particle swarm optimization algorithm is proposed to avoid the above disadvantages in this paper. Firstly, the formula for updating particles is simplified by analyzing the cognition rule of individuals to their environment, the update of a particle location is only related to its own velocity and the optimal particle location in its neighborhood. Secondly, strategies of mutation for superior particle velocities with a small probability and the random evaluation for inferior particle velocities are presented based on partition of particle velocities. Finally, the significant performance in quality of the optimal solutions, convergence speed and robustness of algorithm proposed in this paper are validated by optimizing four benchmark functions.