引用本文:孙书利,吕 楠,白锦花,陈 卓.多传感器时滞系统信息融合最优Kalman滤波器[J].控制理论与应用,2008,25(3):501~505.[点击复制]
SUN Shu-li,LU Nan,BAI Jin-hua,CHEN Zhuo.Multi-sensor information fusion optimal Kalman filter for time-delay systems[J].Control Theory and Technology,2008,25(3):501~505.[点击复制]
多传感器时滞系统信息融合最优Kalman滤波器
Multi-sensor information fusion optimal Kalman filter for time-delay systems
摘要点击 1606  全文点击 2506  投稿时间:2006-09-04  修订日期:2007-05-15
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2008,25(3):501-505
中文关键词  状态时滞系统  多传感器  信息融合  最优Kalman滤波器
英文关键词  state time-delay system  multisensor  information fusion  optimal Kalman filter
基金项目  国家自然科学基金资助项目(60504034); 黑龙江省青年基金资助项目(QC04A01); 黑龙江省普通高等学校青年学术骨干支持计划资助项目(1151G035); 黑龙江大学杰出青年基金资助项目(JC200404).
作者单位
孙书利 黑龙江大学 电子工程学院 自动化系, 黑龙江 哈尔滨 150080 
吕 楠 黑龙江大学 电子工程学院 自动化系, 黑龙江 哈尔滨 150080 
白锦花 黑龙江大学 电子工程学院 自动化系, 黑龙江 哈尔滨 150080 
陈 卓 黑龙江大学 电子工程学院 自动化系, 黑龙江 哈尔滨 150080 
中文摘要
      基于线性最小方差最优加权融合估计算法, 对多传感器的离散线性状态时滞随机系统, 给出了一种非增广分布式加权融合最优Kalman滤波器. 推导了状态时滞系统任两个传感器子系统之间的滤波误差互协方差阵的计算公式. 它与状态增广加权融合滤波器具有相同的精度. 与每个传感器的局部滤波器相比, 分布式融合滤波器具有更高的精度. 与状态和观测增广最优滤波器相比, 具有较小的精度, 但避免了增广所带来的高维计算和大的空间存储,可减小计算负担. 仿真例子验证了其有效性.
英文摘要
      Based on the optimal weighted fusion estimation algorithm with minimum variance, a non-augmentation distributed weighted fusion optimal Kalman filter is given for discrete linear state time-delay stochastic systems with multiple sensors. The cross-covariance matrix of filtering errors between any two-sensor subsystems is derived for state time-delay systems. It has the same accuracy with weighted fusion filter with state augmentation. Compared with local filter based on each sensor, the distributed fusion filter has higher accuracy. Compared with the optimal filter with state and measurement augmentation, it has lower accuracy, but avoids the high-dimension computation and the large memory by augmentation, and has the reduced computational burden. A simulation example also shows its effectiveness.