引用本文:崔 江,王友仁.一种云样本的控制产生及在电路故障诊断中的应用[J].控制理论与应用,2008,25(3):556~559.[点击复制]
CUI Jiang,WANG You-ren.A method of cloud-sample control and generation with application to circuit fault diagnosis[J].Control Theory and Technology,2008,25(3):556~559.[点击复制]
一种云样本的控制产生及在电路故障诊断中的应用
A method of cloud-sample control and generation with application to circuit fault diagnosis
摘要点击 1421  全文点击 1356  投稿时间:2006-05-24  修订日期:2007-03-30
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2008.3.032
  2008,25(3):556-559
中文关键词  云模型  特征样本  神经网络  故障诊断
英文关键词  cloud model  feature samples  neural network  fault diagnosis
基金项目  国家自然科学基金资助项目(60374008,60501022); 航空科学基金资助项目(2006ZD52044); 南京航空航天大学青年基金资助项目(Y0521033).
作者单位
崔 江 南京航空航天大学 自动化学院, 南京 江苏 210016 
王友仁 南京航空航天大学 自动化学院, 南京 江苏 210016 
中文摘要
      为了选择电路故障诊断中的特征样本, 提出了产生云样本的方法, 并用于神经网络的训练和识别. 首先采用逆向云理论对初始特征样本进行统计以获取数字特征, 其次采用正向云理论产生扩展训练样本, 并用新产生的样本训练两种神经网络. 仿真结果表明, 采用云样本训练的神经网络要比采用常规样本训练的性能稳健, 具有较好的抗噪声性能, 在模拟电路故障诊断中达到了较好的诊断效果.
英文摘要
      To select feature samples in circuit fault diagnosis, we propose a method of cloud-sample generation, and apply it to artificial-neural-network training and recognition. First, the inverse cloud model theory is employed to obtain the statistical digital feature of the samples, and then the extended training data set is produced by positive cloud theory. Second, two kinds of networks are trained with the newly produced data set. Simulation results reveal that the performance of the neural network trained by the cloud samples is better than that trained by the conventional methods. The results also proved that the network is robust to random noise, and the proposed method is valid in the faults diagnosis of analog circuit.