引用本文:徐耀群,孙 明.Shannon小波混沌神经网络及其TSP(城市旅行商)问题的求解[J].控制理论与应用,2008,25(3):574~577.[点击复制]
XU Yao-qun,SUN Ming.Shannon wavelet chaotic neural network and its solution to TSP (traveling salesman problem)[J].Control Theory and Technology,2008,25(3):574~577.[点击复制]
Shannon小波混沌神经网络及其TSP(城市旅行商)问题的求解
Shannon wavelet chaotic neural network and its solution to TSP (traveling salesman problem)
摘要点击 1931  全文点击 1600  投稿时间:2006-06-13  修订日期:2007-03-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2008,25(3):574-577
中文关键词  非单调激励函数  混沌神经网络  Lyapunov指数  Shannon小波  旅行商问题
英文关键词  non-monotonous activation function  chaotic neural network  Lyapunov exponent  Shannon wavelet  TSP
基金项目  黑龙江省自然科学基金资助项目(F200610); 哈尔滨市青年科学基金资助项目(2005AFQXJ040); 黑龙江省普通高等学校新世纪优秀人才培养计划资助项目(1153-NCET-008).
作者单位
徐耀群 哈尔滨商业大学 系统工程研究所, 黑龙江 哈尔滨 150028 
孙 明 哈尔滨商业大学 系统工程研究所, 黑龙江 哈尔滨 150028 
中文摘要
      混沌神经网络已经被证明是解决组合优化问题的有效工具. 针对混沌神经网络的单调的激励函数, 通过引入Shannon小波和Sigmoid 函数加和组成的非单调激励函数, 提出了一种新型的暂态混沌神经元模型. 给出了该混沌神经元的倒分岔图和最大Lyapunov指数时间演化图, 分析了其动力学特性. 基于该模型, 构造了一种暂态混沌神经网络, 并将其应用于函数优化和组合优化问题. 通过经典的10城市TSP验证了该暂态混沌神经网络的有效性.
英文摘要
      Chaotic neural network has been proved to be a valid tool for solving combinational optimization problems. Referring to the monotonous activation function of chaotic neural network, we present a novel transient chaotic-neuron model by introducing the Shannon wavelet and the Sigmoid activation function to compose the non-monotonous activation function. The reversed bifurcation and the maximum Lyapunov exponent of the chaotic neuron are given and the dynamic system is analyzed. Based on the neuron model, a novel transient chaotic-neural network is made and applied to functionoptimization and combinational optimization problems. The simulation results of TSP in 10 cities indicate the validity of this novel transient chaotic-neural network.