引用本文:石宇静,柴天佑.基于神经网络与多模型的非线性自适应广义预测解耦控制[J].控制理论与应用,2008,25(4):634~640.[点击复制]
SHI Yu-jing,CHAI Tian-you.Nonlinear adaptive decoupling generalized predictive control using neural networks and multiple models[J].Control Theory and Technology,2008,25(4):634~640.[点击复制]
基于神经网络与多模型的非线性自适应广义预测解耦控制
Nonlinear adaptive decoupling generalized predictive control using neural networks and multiple models
摘要点击 1711  全文点击 1148  投稿时间:2006-09-02  修订日期:2007-09-10
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2008,25(4):634-640
中文关键词  非线性  广义预测控制  解耦  神经网络  多模型
英文关键词  nonlinear  generalized predictive control  decoupling  neural networks  multiple models
基金项目  国家重点基础研究发展计划(973)项目(2002CB312201); 国家自然科学基金重点资助项目(60534010); 国家创新研究群体科学基金资助项目(60521003); 长江学者和创新团队发展计划资助项目(IRT0421).
作者单位E-mail
石宇静 东北大学 自动化研究中心, 辽宁 沈阳 110004 yjshi168@126.com 
柴天佑 东北大学 自动化研究中心, 辽宁 沈阳 110004 tychai@mail.neu.edu.cn 
中文摘要
      针对一类非线性多变量离散时间动态系统, 提出了基于神经网络与多模型的非线性自适应广义预测解耦控制方法. 该控制方法由线性鲁棒广义预测解耦控制器和神经网络非线性广义预测解耦控制器以及切换机构组成.线性鲁棒广义预测解耦控制器用于保证闭环系统输入输出信号有界, 神经网络非线性广义预测解耦控制器能够改善系统性能. 切换策略通过对上述两种控制器的切换, 保证系统稳定的同时, 改善系统性能. 同时本文给出了所提自适应解耦控制方法的稳定性和收敛性分析. 最后, 通过仿真实例验证了该方法的有效性.
英文摘要
      A nonlinear adaptive decoupling generalized predictive control approach based on neural networks and multiple models is proposed for a class of nonlinear multivariable discrete time dynamical systems. The control approach is composed of a linear robust decoupling generalized predictive controller, a neural network nonlinear decoupling generalized predictive controller and a switching mechanism. The linear robust decoupling generalized predictive controller ensures the boundedness of the input and output signals in the closed-loop system, and the neural network nonlinear decoupling generalized predictive controller improves the performance of the system. By using the switching scheme between the linear and nonlinear controllers, it is demonstrated that the stability and the improved system performance can be achieved simultaneously. Stability and convergence analysis are also given. Finally, simulation examples are presented to show the effectiveness of the proposed method.