引用本文:王定成,姜 斌.非线性不确定系统的OS-LSSVMR内模控制[J].控制理论与应用,2008,25(5):905~907.[点击复制]
WANG Ding-cheng,JIANG Bin.OS-LSSVMR internal model control for nonlinear uncertain systems[J].Control Theory and Technology,2008,25(5):905~907.[点击复制]
非线性不确定系统的OS-LSSVMR内模控制
OS-LSSVMR internal model control for nonlinear uncertain systems
摘要点击 1494  全文点击 1445  投稿时间:2006-08-24  修订日期:2007-09-11
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2008.5.021
  2008,25(5):905-907
中文关键词  非线性  不确定  在线  稀疏  最小二乘支持向量机回归  内模控制
英文关键词  nonlinear  uncertain  online  sparsity  least squares support vector machines regression (LSSVMR)  internal model control
基金项目  江苏省高等学校自然科学研究资助项目(06KJB210049); 江苏省自然科学基金资助项目(BK2007195); 国家自然科学基金资助项目(60574083).
作者单位E-mail
王定成 南京信息工程大学 计算机与软件学院, 江苏 南京 210044
南京航空航天大学 自动化学院, 江苏 南京 210016 
dcwang2005@126.com  
姜 斌 南京航空航天大学 自动化学院, 江苏 南京 210016 binjiang@nuaa.edu.cn 
中文摘要
      针对非线性、不确定性对象内模控制不易精确建模的问题, 提出OS-LSSVMR(online-sparse-least-squaressupport-vector-machines-regression)在线调整模型的内模控制方法. 首先介绍一种具有在线建模和稀疏性解的OSLSSVMR; 再采用OS-LSSVMR建立内模控制的正向模型, 对模型可逆并且唯一的非线性系统设计逆模控制器; 在模型偏离被控对象时在线修正正逆模型. 仿真表明, 该方法对非线性不确定性系统具有较好的实时性、鲁棒性和在线校正功能.
英文摘要
      The internal model control (IMC) based on the online-sparse-least-squares-support-vector-machinesregression (OS-LSSVMR) is proposed to tackle the difficulty in constructing the accurate model for the nonlinear uncertain system. The OS-LSSVMR with sparse resolution for the online modeling is introduced, and is applied to construct the forward internal model of the plant. The controller based on the backward internal model of the plant is also developed for the reversible system. Both forward and backward models will be automatically modified online when they deviate from the plant. The simulation shows that, for an uncertain nonlinear system, this control method provides a better real-time performance and robustness, as well as the online modification ability.