引用本文:王春生,吴 敏,佘锦华.基于PNN和IGS的铅锌烧结块成分智能集成预测模型[J].控制理论与应用,2009,26(3):316~320.[点击复制]
WANG Chun-sheng,WU Min,SHE Jin-hua.An intelligent integrated-prediction model for components of Pb-Zn agglomerate based on the process neural network(PNN) and the improved grey system(IGS)[J].Control Theory and Technology,2009,26(3):316~320.[点击复制]
基于PNN和IGS的铅锌烧结块成分智能集成预测模型
An intelligent integrated-prediction model for components of Pb-Zn agglomerate based on the process neural network(PNN) and the improved grey system(IGS)
摘要点击 2108  全文点击 1412  投稿时间:2007-07-18  修订日期:2008-06-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2009.3.018
  2009,26(3):316-320
中文关键词  铅锌烧结过程  成分预测  过程神经网络  改进灰色系统  信息熵  智能集成预测模型
英文关键词  lead-zinc sintering process  prediction of component  process neural network  improved grey system  information entropy  intelligent integrated-prediction model
基金项目  国家杰出青年科学基金资助项目(60425310); 国家863计划课题(2008AA04Z128).
作者单位E-mail
王春生 中南大学 信息科学与工程学院, 湖南 长沙 410083 wangcsu@mail.csu.edu.cn 
吴 敏 中南大学 信息科学与工程学院, 湖南 长沙 410083 min@csu.edu.cn 
佘锦华 东京工科大学 计算机科学学部, 日本 东京 192-0982 she@cc.teu.ac.jp 
中文摘要
      针对复杂的烧结块成分预测问题, 提出一种基于过程神经网络和改进灰色系统的铅锌烧结块成分智能集成预测模型. 首先利用过程神经网络可充分表达时间序列中时间累积效应、灰色系统可弱化数据序列波动性的特点, 分别对烧结块成分进行预测, 然后从信息论的观点出发, 提出一种确定各预测模型加权系数的熵值递推算法, 通过对两个预测模型的预测结果进行加权集成, 获得更加准确的铅锌烧结块成分预测结果. 结果表明, 智能集成模型 的预测精度高于单一预测模型, 能有效地对烧结块成分进行预测, 满足了配料计算对预测精度和数据完备性的
英文摘要
      To deal with the problem of the component prediction for Pb-Zn agglomerate, an intelligent integratedprediction model based on the process neural network(PNN) and the improved grey system(IGS) is presented. First, the component of agglomerate is predicted by PNN and IGS models, and then, a recursive entropy algorithm for the weighting coefficients is devised from the viewpoint of the information theory. The component of Pb-Zn agglomerate is predicted by integrating the two prediction models. Application results show that the integrated model has high prediction accuracy; it predicts the components of agglomerate efficiently and meets the data-completeness requirements for proportioning computation.