引用本文: | 程国扬,黄宴委.双惯性伺服传动系统的抗扰动复合非线性控制[J].控制理论与应用,2014,31(11):1539~1547.[点击复制] |
CHENG Guo-yang,HUANG Yan-wei.Disturbance-rejection composite nonlinear control applied to two-inertia servo drive system[J].Control Theory and Technology,2014,31(11):1539~1547.[点击复制] |
|
双惯性伺服传动系统的抗扰动复合非线性控制 |
Disturbance-rejection composite nonlinear control applied to two-inertia servo drive system |
摘要点击 2425 全文点击 1100 投稿时间:2014-01-13 修订日期:2014-09-11 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2014.14007 |
2014,31(11):1539-1547 |
中文关键词 运动控制 非线性反馈 抗扰动 观测器 瞬态性能 |
英文关键词 motion control nonlinear feedback disturbance-rejection observer transient performance |
基金项目 |
|
中文摘要 |
本文把复合非线性反馈(composite nonlinear feedback, CNF)控制技术推广到带有非定常扰动的输入饱和限幅的线性系统. 其中, 未知扰动被作为一个扩张状态量增广到被控对象的模型中, 然后设计一个扩展状态观测器来对系统的状态量和扰动同时进行估计, 通过在CNF控制的框架中引入一个扰动补偿机制, 在降低由扰动引起的稳态误差的同时, 保留了CNF原有的快速的瞬态性能. 这种控制方案对定常或时变扰动、匹配或非匹配的扰动, 都能统一处理. 论文对该控制方案的闭环稳定性和定点跟踪性能进行了理论分析, 并把它应用到一个双惯性伺服传动系统. 数值仿真结果验证了该方案在定点跟踪控制中具有优越的瞬态性能和稳态精度,
且对扰动/给定目标的幅值变化也有一定的性能鲁棒性. |
英文摘要 |
This paper extends the composite nonlinear feedback (CNF) control method to linear systems subject to input saturation and non-constant disturbance. The unknown disturbance is treated as an extended state variable to be augmented with the plant model, and then an extended state observer is designed to estimate both the states and the disturbance, and a disturbance compensation mechanism is incorporated into the CNF framework, so as to alleviate the steady-state bias due to disturbances, while retaining the fast transient performance of the original CNF control. Both constant and varying disturbances, either matched or unmatched, can be handled within this control scheme. Closed-loop stability and set-point tracking performance are analyzed theoretically. The proposed control scheme is then applied to a two-inertia servo drive system. Simulation studies are conducted to verify its superior transient performance and steady-state accuracy in set-point tracking, as well as the robustness against the amplitude variations of disturbance/set-point. |
|
|
|
|
|