引用本文: | 黄显林,张旭,卢鸿谦.一类非线性系统有限时间流形吸引的浸入与不变控制[J].控制理论与应用,2015,32(12):1592~1598.[点击复制] |
HUANG Xian-lin,ZHANG Xu,LU Hong-qian.Finite-time attractivity-based immersion and invariance control for a class of nonlinear systems[J].Control Theory and Technology,2015,32(12):1592~1598.[点击复制] |
|
一类非线性系统有限时间流形吸引的浸入与不变控制 |
Finite-time attractivity-based immersion and invariance control for a class of nonlinear systems |
摘要点击 3160 全文点击 2343 投稿时间:2015-05-16 修订日期:2015-07-01 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2015.14049 |
2015,32(12):1592-1598 |
中文关键词 非线性系统 系统浸入 不变流形 有限时间 外部扰动 |
英文关键词 nonlinear systems system immersion manifold invariance finite time external disturbance |
基金项目 |
|
中文摘要 |
本文对一类非线性系统, 提出了一种设计渐近稳定控制律的有效方法. 其中, 通过更新系统浸入与不变流
形理论的应用方法, 流形的吸引坐标可以在有限时间内收敛到平衡点. 为了得到闭环系统的稳定性, 增广系统的各
个信号被证明是有界的. 本文得出的一个重要成果是流形吸引有限时间的计算方法. 此外, 在施加了有限时间流形
吸引控制器之后, 流形对外部有界未知扰动具有不敏感性. 最后利用车摆系统来论述所提出的控制方法的设计步
骤, 以及通过仿真验证控制器的性能. |
英文摘要 |
We propose an effective approach for designing asymptotically stabilizing control laws for a class of nonlinear
systems. In this approach, by modifying the application method of the immersion and invariance (I&I) theorem, the offthe-
manifold coordinates are ensured to converge to the equilibrium point in finite time. In order to obtain the stability
of closed-loop system, all trajectories in the augmented system are proved bounded. An important result we obtained
is the computation method for the finite time of the manifold attractivity. Moreover, the application of the finite-time
manifold-attractivity controller makes the manifold insensitive to all external bounded unknown disturbances. The design
procedures are detailed by designing a controller for a cart-pendulum system, and the controller performances are validated
by simulations. |
|
|
|
|
|