引用本文: | 杨春山,王雪梅,邓自立.带不确定参数和噪声方差的鲁棒观测融合Kalman滤波器[J].控制理论与应用,2015,32(12):1635~1640.[点击复制] |
YANG Chun-shan,WANG Xue-mei,DENG Zi-li.Robust measurement fusion Kalman filter with uncertain parameters and noise variances[J].Control Theory and Technology,2015,32(12):1635~1640.[点击复制] |
|
带不确定参数和噪声方差的鲁棒观测融合Kalman滤波器 |
Robust measurement fusion Kalman filter with uncertain parameters and noise variances |
摘要点击 2704 全文点击 1552 投稿时间:2014-10-20 修订日期:2015-09-01 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2015.14139 |
2015,32(12):1635-1640 |
中文关键词 不确定多传感器系统 加权观测融合 极大极小鲁棒Kalman滤波器 虚拟白噪声 Lyapunov方程方法 |
英文关键词 uncertain multisensor system weighted measurement fusion minimax robust Kalman filter fictitious white noise Lyapunov equation approach |
基金项目 国家自然科学基金项目(60874063, 60374026)资助. |
|
中文摘要 |
对带不确定参数和噪声方差的多传感器定常系统, 引入虚拟白噪声补偿不确定参数, 可将其转化为带已知
参数和不确定噪声方差系统. 应用极大极小鲁棒估值原理和加权最小二乘法, 基于带噪声方差保守上界的最坏情形
保守系统, 提出了鲁棒加权观测融合Kalman滤波器, 并证明了它与集中式融合鲁棒Kalman滤波器是等价的, 且融合
器的鲁棒精度高于每个局部滤波器鲁棒精度. 一个Monte-Carlo仿真例子说明了如何寻求不确定参数的鲁棒域和如
何搜索保守性较小的虚拟噪声方差上界. |
英文摘要 |
For the multisensor time-invariant system with uncertain parameters and noise variances, by introducing a
fictitious white noise to compensate the uncertain parameters, we can convert the uncertain system into the system with
known parameters and uncertain noise variances. Using the minimax robust estimation principle and weighted least squares
method, we present a robust weighted measurement fusion Kalman filter based on the worst-case conservative system with
the conservative upper bounds of noise variances. We prove that this Kalman filter is equivalent to the robust centralized
fusion Kalman filter, and its robust accuracy is higher than that of each local robust Kalman filter. A Monte-Carlo simulation
example shows how to find the robust region of uncertain parameter and how to search the less-conservative upper bound
of fictitious noise variances. |