引用本文:郑毅,李少远,魏永松.通讯信息约束下具有全局稳定性的分布式系统预测控制(英文)[J].控制理论与应用,2017,34(5):575~585.[点击复制]
ZHENG Yi,LI Shao-yuan,WEI Yong-song.Global stabilizing distributed model predictive control systems with limited communication[J].Control Theory and Technology,2017,34(5):575~585.[点击复制]
通讯信息约束下具有全局稳定性的分布式系统预测控制(英文)
Global stabilizing distributed model predictive control systems with limited communication
摘要点击 3018  全文点击 2029    
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.16029
  2017,34(5):575-585
中文关键词  大规模系统  预测控制  分布式预测控制  约束控制
英文关键词  large-scale systems  model predictive control  distributed model predictive control  constrained control
基金项目  large-scale systems; model predictive control; distributed model predictive control; constrained control
作者单位
郑毅 上海交通大学自动化系 
李少远* 上海交通大学自动化系 
魏永松 上海交通大学自动化系 
中文摘要
      本文针对一类由状态相互耦合的子系统组成的分布式系统, 提出了一种可以处理输入约束的保证稳定性的非 迭代协调分布式预测控制方法(distributed model predictive control, DMPC). 该方法中, 每个控制器在求解控制率时只与 其它控制器通信一次来满足系统对通信负荷限制; 同时, 通过优化全局性能指标来提高优化性能. 另外, 该方法在优化 问题中加入了一致性约束来限制关联子系统的估计状态与当前时刻更新的状态之间的偏差, 进而保证各子系统优化问 题初始可行时, 后续时刻相继可行. 在此基础上, 通过加入终端约束来保证闭环系统渐进稳定. 该方法能够在使用较少 的通信和计算负荷情况下, 提高系统优化性能. 即使对于强耦合系统同样能够保证优化问题的递推可行性和闭环系统的 渐进稳定性. 仿真结果验证了本文所提出方法的有效性.
英文摘要
      A novel stabilized distributed model predictive control (DMPC) with input constraints and global cost optimization coordination strategy is proposed for spatially distributed coupling systems which are presented by states interacted models. The distributed controllers make decisions locally and merely communicate once a control period with each others. Cooperation is promoted by consideration of the system-wide objective by each local controller. Consistency constraints, which bound the estimation errors of the interaction sequences among subsystems, are designed to guarantee that, if an initially feasible solution can be found, subsequent feasibility of the algorithm is guaranteed at every update, and that the closed-loop system is asymptotically stable. The proposed control algorithm could reduce the communication and computation loads with improved performance of entire systems, and guarantee the recursive feasibility and the asymptotically stability even when the controlled subsystems are strong coupled. Simulation results show that the performance of the proposed DMPC is very close to that of a centralized model predictive control (MPC).