引用本文:高镜媚,汪定伟.3级网状随机性库存控制策略的仿真优化[J].控制理论与应用,2009,26(11):1218~1224.[点击复制]
GAO Jing-mei,WANG Ding-wei.Simulation-based optimization on three-echelon network stochastic inventory control policies[J].Control Theory and Technology,2009,26(11):1218~1224.[点击复制]
3级网状随机性库存控制策略的仿真优化
Simulation-based optimization on three-echelon network stochastic inventory control policies
摘要点击 1798  全文点击 1109  投稿时间:2008-05-15  修订日期:2009-02-22
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2009.11.CCTA080468
  2009,26(11):1218-1224
中文关键词  3级库存  数学模型  仿真优化  粒子群优化算法
英文关键词  three-echelon inventory  mathematical model  simulation-based optimization  particle swarm optimization
基金项目  国家自然科学基金重点资助项目(70931001); 国家自然科学基金创新群体资助项目(60821063); 国家自然科学基金面上基金资助项目(70771021); 国家教育部博士点基金资助项目(200801450008).
作者单位E-mail
高镜媚* 东北大学系统工程研究所 gaojingmei@163.com 
汪定伟 东北大学系统工程研究所  
中文摘要
      研究了多制造商, 多分销商和多零售商的3级网状随机性库存系统的(r;Q)库存控制策略问题. 由于该系统具有顾客到达时间服从泊松分布, 随机顾客需求量, 随机顾客购买行为, 随机订货时间和制造商生产容量有限制等特点, 使得解析方法很难描述系统中的多种复杂随机因素并无法求解有效的库存控制策略. 为此建立了以总成本最小为目标的数学模型, 运用了基于仿真的优化方法, 通过将仿真方法与粒子群优化算法相结合对问题进行求解. 最后通过仿真实例与比较, 验证了模型和基于仿真的粒子群优化方法的可行性和有效性, 也表明了基于仿真的优化方法在供应链管理中的适用性.
英文摘要
      The problem of how to set the (r;Q) inventory control policies for a three-echelon network stochastic inventory system is studied. Because the customer arrival time is a Possion process, and all of the customer demand, the customer purchasing behavior and the lead time are stochastic and the production capacity is limited in the inventory system, it is difficult for the analytical method to describe various complex and stochastic factors and develop an effective inventory control policy. A mathematical model is built for minimizing the total cost. Next, the simulation-based optimization method is used to solve the problem by combining the simulation method together with the particle-swarm optimization algorithm. The simulation results demonstrate the feasibility and the effectiveness of the mathematical model and the simulation-based particle-swarm optimization method by comparisons, and show the applicability of the simulation-based optimization method in the supply chain management.