引用本文:吴德会.非线性动态系统的Wiener神经网络辨识法[J].控制理论与应用,2009,26(11):1192~1196.[点击复制]
WU De-hui.Identification method for nonlinear dynamic system using Wiener neural network[J].Control Theory and Technology,2009,26(11):1192~1196.[点击复制]
非线性动态系统的Wiener神经网络辨识法
Identification method for nonlinear dynamic system using Wiener neural network
摘要点击 2291  全文点击 1839  投稿时间:2008-05-29  修订日期:2009-01-05
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2009.11.CCTA080545
  2009,26(11):1192-1196
中文关键词  非线性动态系统  辨识  神经网络  Wiener模型
英文关键词  nonlinear dynamic system  identification  neural network  Wiener model
基金项目  国家自然科学基金资助项目(50705039); 中国博士后基金资助项目(20070420358).
作者单位E-mail
吴德会* 九江学院 数字控制技术与应用江西省重点实验室
清华大学 电力系统国家重点实验室 
wudehui@tsinghua.edu.cn 
中文摘要
      提出了一种新的Wiener神经网络结构并将其应用于非线性动态系统辨识问题. 首先, 用Wiener模型对非线性动态系统进行描述, 将其分解成线性动态子环节串接非线性静态增益的形式. 其次, 设计一种新型的神经网络结构, 使网络权值对应于相应的Wiener模型参数;并推导了基于反向传播的网络权值调整方法. 最后, 通过网络迭代训练, 可同时得到线性动态子环节和非线性静态增益的模型参数. 通过一个Wiener模型的数值仿真来验证方法的有效性, 仿真结果表明所提辨识方法切实可行.
英文摘要
      A novelWiener neural network structure is presented and applied to nonlinear dynamic system identification. Firstly, the nonlinear dynamic system is described by a Wiener model which consists of a linear dynamic part in cascade with a nonlinear static gain. Secondly, a novel neural network structure is designed, the weights in which are corresponding with the parameters of the Wiener model. Thirdly, backward-propagation methods for the adjustment of weights in the network are discussed. Finally, parameters of the linear dynamic part and the nonlinear static gain in the Wiener model are determined simultaneously by iterative training. A numerical simulation of Wiener model is provided to validate the effectiveness. Simulation results show that the suggested identification schemes are practically feasible.