引用本文:潘海玉,裴道武,陈仪香.基于三I算法的模糊系统的响应能力[J].控制理论与应用,2011,28(1):24~30.[点击复制]
PAN Hai-yu,PEI Dao-wu,CHEN Yi-xiang.Response ability of fuzzy systems based on triple I method[J].Control Theory and Technology,2011,28(1):24~30.[点击复制]
基于三I算法的模糊系统的响应能力
Response ability of fuzzy systems based on triple I method
摘要点击 2817  全文点击 1528  投稿时间:2008-08-18  修订日期:2010-03-09
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.1.CCTA080866
  2011,28(1):24-30
中文关键词  模糊推理  模糊系统  三I算法  蕴涵算子族  响应函数
英文关键词  fuzzy reasoning  fuzzy system  triple I method  parametric operators  response function
基金项目  国家自然科学基金资助项目(10871229, 60673117); 上海市重点学科基金资助项目(B412); 中央高校基本科研业务费专项基金资助项目(78210045).
作者单位E-mail
潘海玉* 华东师范大学 上海市高可信计算重点实验室 phyu76@sohu.com 
裴道武 浙江理工大学 理学院  
陈仪香 华东师范大学 上海市高可信计算重点实验室  
中文摘要
      探讨模糊系统的函数逼近能力是模糊系统理论研究的一个重要的课题. 本文首次讨论了在两种推理规则情形下由三I支持度算法和模糊熵三I算法设计的模糊系统的响应能力. 针对三I支持度算法, 分别就正则蕴涵算子和11个具体的模糊蕴涵算子, 考察了相应模糊系统的响应能力, 讨论了基于模糊熵三I算法和三I算法设计的模糊系统的响应函数之间的关系. 此外, 在多规则情形下, 研究了推理过程中推理与聚合的先后次序对控制性能的影响.
英文摘要
      The function approximate abilities of fuzzy systems are important topics in the theory of fuzzy systems. In the present paper, we study response abilities of fuzzy systems designed by using the triple I sustaining degree method and the fuzzy entropy triple I method under two different reasoning rules. For the regular implication operators and eleven implication operators, we discuss the response abilities of fuzzy systems designed by using triple I sustaining degree method. We also investigate the relationship between different response functions based on the above two inference methods. Moreover, under the condition of multi-rules, we study the effect of the order of interchange between the inference and the aggregation on the control performance of fuzzy systems.