引用本文: | 谭建豪,章兢.遗传算法在模糊设计中的应用[J].控制理论与应用,2010,27(4):501~504.[点击复制] |
TAN Jian-hao,ZHANG Jing.Application of genetic algorithms in fuzzy design[J].Control Theory and Technology,2010,27(4):501~504.[点击复制] |
|
遗传算法在模糊设计中的应用 |
Application of genetic algorithms in fuzzy design |
摘要点击 1714 全文点击 1024 投稿时间:2008-12-13 修订日期:2009-05-10 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 |
2010,27(4):501-504 |
中文关键词 模糊设计 遗传算法 模糊优化 回归方程 飞边尺寸 |
英文关键词 fuzzy design genetic algorithm fuzzy optimization regression equation flash size |
基金项目 国家自然科学基金资助项目(60634020); 湖南省自然科学基金资助项目(08JJ3132). |
|
中文摘要 |
构造了CAD系统模糊设计的一种具体解决方案: 其环境为收集到的现场数据; 学习环节采用基于遗传算法的模糊优化算法; 知识库由设计准则构成; 执行部件为设计单元. 建立了回归方程的模糊优化学习算法, 并构造了该算法的流程. 然后利用该模糊设计系统获得了飞边尺寸设计准则, 且应用实例对该算法的稳定性进行了校验. 为评估该算法的性能, 将其与最小二乘法和免疫遗传算法进行了比较, 结果表明, 该算法速度快, 精度高, 稳定性好. |
英文摘要 |
A practical scheme of fuzzy design in CAD systems is developed, of which the environment is the currently collected data; the learning unit is the fuzzy optimization algorithm based on the genetic algorithms; the knowledge base is
composed of design criteria; the executive part is the design unit. The fuzzy optimization learning algorithm of the regression equation is developed, and the corresponding flow chart is built. Then, the design criterion of a flash size is obtained by using this system; and the stability of the algorithm is verified through some examples. To evaluate the performances of the algorithm, we compare it with the least-squares method(LSM) and the immune-genetic algorithm(IGA); the result shows that our algorithm is faster, with higher precision and stability than the other algorithms. |
|
|
|
|
|