引用本文:刘锐,戚国庆,陈黎,盛安冬.不完全量测下随机有偏离散系统的Cramér-Rao下界[J].控制理论与应用,2010,27(7):927~932.[点击复制]
LIU Rui,QI Guo-qing,CHEN Li,SHENG An-dong.Cramér-Rao lower bounds for stochastic-bias discrete-time system with incomplete measurements[J].Control Theory and Technology,2010,27(7):927~932.[点击复制]
不完全量测下随机有偏离散系统的Cramér-Rao下界
Cramér-Rao lower bounds for stochastic-bias discrete-time system with incomplete measurements
摘要点击 2832  全文点击 1511  投稿时间:2009-03-12  修订日期:2009-10-15
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2010.7.CCTA090248
  2010,27(7):927-932
中文关键词  状态估计  不完全量测  随机有偏  Cramér-Rao下界
英文关键词  state estimation  incomplete measurements  stochastic-bias  Cramér-Rao lower bound
基金项目  国家自然科学基金资助项目(60804019, 60874118); 南京理工大学科技发展基金资助项目(XKF09020).
作者单位E-mail
刘锐* 南京理工大学 自动化学院 liurui2001_2001@yahoo.com.cn 
戚国庆 南京理工大学 自动化学院  
陈黎 南京理工大学 自动化学院  
盛安冬 南京理工大学 自动化学院  
中文摘要
      针对含有不完全随机有偏测量序列的状态估计问题, 给出了统计意义下的修正递推估计误差方差Cramér-Rao下界(CRLB)求解算法. 首先建立了不完全随机有偏量测离散系统的数学模型, 进而推导了枚举的CRLB和统计意义的CRLB计算式, 该统计意义的CRLB为枚举CRLB的下界, 其计算量远小于枚举CRLB求解的计算量. 最后, 以给定探测概率和偏差发生率下的一类光电跟踪系统为例, 进行了数字仿真.
英文摘要
      A modified recursive Cramér-Rao lower bound(CRLB) of the statistical estimation error variance is derived for the state estimation with incomplete and stochastic-biased measurement sequences. Firstly, a mathematical model of the discrete-time system with incomplete and stochastic-biased measurements is built; and then, the enumeration CRLB and the statistical CRLB are derived, respectively. The proposed statistical CRLB is a lower bound of the enumeration CRLB, but its calculation complexity is far lower than that of the enumeration CRLB. Simulation is performed in an optical-electrical tracking system with pre-specified detection probability and biased occurrence probability.