引用本文:李军军,甘世红,许波桅.基于伪幂函数的离散粒子群算法及其应用[J].控制理论与应用,2011,28(6):834~838.[点击复制]
LI Jun-jun,GAN Shi-hong,XU Bo-wei.Discrete particle swarm optimization algorithm based on pseudo power function and its applications[J].Control Theory and Technology,2011,28(6):834~838.[点击复制]
基于伪幂函数的离散粒子群算法及其应用
Discrete particle swarm optimization algorithm based on pseudo power function and its applications
摘要点击 2547  全文点击 1974  投稿时间:2009-09-21  修订日期:2010-09-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.6.CCTA091217
  2011,28(6):834-838
中文关键词  离散粒子群优化算法  伪幂函数  无线传感网络  路由
英文关键词  discrete particle swarm optimization  pseudo power function  wireless sensor networks  routing
基金项目  上海市教育委员会科研创新资助项目(09YZ273); 上海市科委“创新行动计划”资助项目(09dz1202400); 上海市优秀青年基金资助项目(ssc08022); 上海海洋大学博士启动基金资助项目(A–2400-08–0296).
作者单位E-mail
李军军* 上海海洋大学 电气工程系 jjli@shou.edu.cn 
甘世红 上海海洋大学 电气工程系  
许波桅 上海海事大学 基础实验实训中心  
中文摘要
      针对概率贪婪离散粒子群算法不能兼顾收敛速度与收敛率的缺点, 提出一种基于伪幂函数的离散粒子群算法. 该方法对贪婪度函数进行伪幂化处理, 提高了较远离散位置的选择概率, 降低了较近离散位置的选择概率, 能有效避免早熟收敛, 提高收敛率. 对该算法的性能进行了分析. 无线传感网络路由优化结果表明, 该算法可以获得较好的优化结果.
英文摘要
      Discrete particle swarm optimization algorithm based on probability greed method doesn’t provide good tradeoff between the convergence speed and the convergence percentage. To avoid this disadvantage, a new discrete particle swarm optimization algorithm is developed by introducing a pseudo power function to the greed function. The probability of choosing a far discrete position is increased; meanwhile the probability of choosing a near discrete position is decreased. Premature convergence is well avoided and the convergence percentage is enhanced. The properties of the algorithm are analyzed. Tests in route-optimization in wireless sensor networks show better results in the application of the proposed method.