引用本文:梁涛年,陈建军.分数阶参数不确定系统的PI^λ控制器[J].控制理论与应用,2011,28(3):400~406.[点击复制]
LIANG Tao-nian,CHEN Jian-jun.Design of fractional order PI^λ controller for fractional order systems with uncertain parameters[J].Control Theory and Technology,2011,28(3):400~406.[点击复制]
分数阶参数不确定系统的PI^λ控制器
Design of fractional order PI^λ controller for fractional order systems with uncertain parameters
摘要点击 2269  全文点击 1711  投稿时间:2010-01-03  修订日期:2010-10-22
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2011,28(3):400-406
中文关键词  参数不确定系统  稳定域  D分解法  PI^λ控制器  Kharitonov理论
英文关键词  parameter uncertain system  stability region  D-decomposition technique  PI^λ controller  Kharitonov theorem
基金项目  
作者单位E-mail
梁涛年* 西安电子科技大学 机电工程学院 ltn_99@126.com 
陈建军 西安电子科技大学 机电工程学院  
中文摘要
      利用求解分数阶参数不确定系统稳定域的方法, 设计了使分数阶参数不确定系统具有鲁棒性的分数阶PI^λ控制器. 首先采用Kharitonov理论, 将分数阶参数不确定系统分解成若干个参数确定的子系统, 然后用D分解方法分别求出在PI^λ控制器的控制下, 使各个子系统都取得较大稳定域的参数λ值. 再采用此λ值构建PI^λ控制器并计算各个子系统的稳定域. 各个子系统稳定域的交集即为参数不确定系统在PI^λ控制器控制下的稳定域. 同时证明了所构建的PI^λ控制器能稳定整个参数不确定系统组. 最后在稳定域内取控制器参数值, 便构成了所设计的PI^λ控制器. 文中采用实例对此设计方法进行验证, 并用所构建的PI^λ控制器对参数不确定系统组的各个子系统进行阶跃响应分析, 结果表明PI^λ控制器对参数不确定系统具有较强的鲁棒性.
英文摘要
      The paper presents a method for designing the robust fractional order PI^λ controller by computing the stability region of the fractional order system with uncertain parameter. Firstly, the Kharitonov theorem is adopted to decompose the original fractional order system with uncertain parameters into several subsystems with parameter certainties. Secondly, the D-decomposition technique is applied to compute the stability region of each subsystem to determine the parameter λ value which uniformly ensure a bigger stability region for all subsystem. Thirdly, with the parameter λ value, we design a fractional order PI^λ controller for each subsystem and computer its stability region. The intersection of the obtained stability regions is considered the stability region of the original system under the control of the designed PI^λ controller. This paper proves that the designed PI^λ controller stabilizes the original fractional order system with uncertain parameters. Finally, the fractional order PI^λ controller is constructed based on the control parameters in the stability region. The proposed method is illustrated by an example. The step response of each subsystem is analyzed when using this PI¸ controller. The result shows that fractional order PI^λ controller has stronger robustness for the fractional order system with uncertain parameters.