引用本文:张文辉,齐乃明,尹洪亮.基于滑模变结构的空间机器人神经网络跟踪控制[J].控制理论与应用,2011,28(9):1141~1144.[点击复制]
ZHANG Wen-hui,QI Nai-ming,YIN Hong-liang.Neural-network tracking control of space robot based on sliding-mode variable structure[J].Control Theory and Technology,2011,28(9):1141~1144.[点击复制]
基于滑模变结构的空间机器人神经网络跟踪控制
Neural-network tracking control of space robot based on sliding-mode variable structure
摘要点击 3097  全文点击 2971  投稿时间:2010-01-12  修订日期:2010-12-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.9.CCTA100041
  2011,28(9):1141-1144
中文关键词  神经网络  空间机器人  滑模变结构  自适应  轨迹跟踪
英文关键词  neural network  space robot  sliding-mode variable structure  adaptive  trajectory tracking
基金项目  中国航天科技集团创新基金资助项目(CASC–HIT09C01).
作者单位E-mail
张文辉* 徐州师范大学 机电工程学院
哈尔滨工业大学 航天学院 
hit_zwh@126.com 
齐乃明 哈尔滨工业大学 航天学院  
尹洪亮 哈尔滨工业大学 航天学院  
中文摘要
      研究了在无需模型估计值的情况下不确定空间机器人轨迹跟踪问题, 提出了滑模变结构的神经网络控制方案. 首先基于Lyapunov理论设计了一种径向基函数(RBF)神经网络控制器来补偿系统中的未知非线性, 该神经控制器能够保证闭环系统的稳定性, 而通过利用饱和函数把神经网络和滑模控制结合起来的控制器来不仅可以进一步削弱滑模控制输入的抖振, 且当神经网络控制器无效时仍能保证系统鲁棒性. 仿真结果证明了该控制器能在初期及强干扰情况下均能达到较好的控制效果.
英文摘要
      This paper investigates the tracking problem of space robot with uncertainties, without using the estimation values of a model,and puts forward a neural-network control scheme with sliding-mode variable structure. A radial-basisfunction(RBF) neural-network controller based on Lyapunov theory is designed to compensate for the unknown nonlinearity in the system. The neural-network controller guarantees the stability of the closed-loop system. The controller that integrates the neutral network with the variable structure by saturation function not only effectively eliminates the chattering in sliding-mode input, but also maintains the robustness of the closed-loop system when the neutral-network controller fails. Simulation results show the desirable performances of the presented controller in the early phase of operation and in the strong disturbance situation.