引用本文:周承兴,刘贵喜,侯连勇,钟兴质.改进的高斯粒子概率假设密度滤波算法[J].控制理论与应用,2011,28(7):1005~1008.[点击复制]
ZHOU Cheng-xing,LIU Gui-xi,HOU Lian-yong,ZHONG Xing-zhi.Modified Gaussian particle probability hypothesis density filtering algorithm[J].Control Theory and Technology,2011,28(7):1005~1008.[点击复制]
改进的高斯粒子概率假设密度滤波算法
Modified Gaussian particle probability hypothesis density filtering algorithm
摘要点击 1955  全文点击 1661  投稿时间:2010-05-05  修订日期:2010-07-05
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.7.CCTA100479
  2011,28(7):1005-1008
中文关键词  多目标跟踪  随机集  概率假设密度  混合高斯  粒子近似
英文关键词  multiple target tracking  random sets  probability hypothesis density  Gaussian mixture function  particle approximation
基金项目  国家部委基金资助项目(9140A16050109DZ0124, 9140A16050310DZ01); 国家部委十一五科技项目资助项目(51316060205); 中央高校基本科研业务费专项资金资助项目(JY10000904017).
作者单位E-mail
周承兴 西安电子科技大学 自动控制系  
刘贵喜* 西安电子科技大学 自动控制系 gxliu@xidian.edu.cn 
侯连勇 西安电子科技大学 自动控制系  
钟兴质 西安电子科技大学 自动控制系  
中文摘要
      高斯粒子概率假设密度滤波在预测和更新时需要进行粒子近似和重新采样, 这在一定程度上降低了算法的精度和实时性. 针对这一问题, 提出一种改进的高斯粒子概率假设密度滤波算法. 算法通过粒子的方式表示并传递目标的概率假设密度(PHD)预测值, 然后直接利用这些表征PHD预测值的粒子进行更新, 最后利用具有最大似然性的粒子将更新后的PHD表示为混合高斯形式. 仿真实验表明, 和高斯粒子概率假设密度滤波相比, 改进算法的多目标误差距离减少了约30%, 运行时间减少了约50%.
英文摘要
      The Gaussian particle probability hypothesis density filter needs particle approximation and resampling in the prediction step and the update step; this lowers the accuracy and deteriorates the real-time performance of the algorithm to some extent. To solve this problem, a modified Gaussian particle probability hypothesis density filtering algorithm is proposed. This algorithm expresses and transfers the predicted probability hypothesis density (PHD) of targets in the form of particles, and then directly updates these particles representing the predicted PHD. Finally, the algorithm approximates the updated PHD into a Gaussian mixture function by using the particles with greatest likelihood. The simulation experiments show that the modified algorithm reduces the multi-target error distance by nearly 30% and cuts the running time by nearly 50% in comparison with Gaussian particle probability hypothesis density filter.