引用本文:范剑超,韩敏.微粒群优化动态神经网络模型结构分析[J].控制理论与应用,2011,28(9):1075~1081.[点击复制]
FAN Jian-chao,HAN Min.Model-structure analysis of dynamic neural networks with particle-swarm optimization[J].Control Theory and Technology,2011,28(9):1075~1081.[点击复制]
微粒群优化动态神经网络模型结构分析
Model-structure analysis of dynamic neural networks with particle-swarm optimization
摘要点击 2551  全文点击 1749  投稿时间:2010-06-09  修订日期:2010-10-19
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.9.CCTA100692
  2011,28(9):1075-1081
中文关键词  微粒群优化  动态神经网络  鲁棒不确定性  稳定性
英文关键词  particle-swarm optimization  dynamic neural networks  robust uncertain  stability
基金项目  国家自然科学基金资助项目(61074096); 国家高技术研究发展计划“863”资助项目(2007AA04Z158); 国家科技支撑计划资助项目(2006BAB14B05); 国家重点基础研究发展计划“973”资助项目(2006CB403405).
作者单位E-mail
范剑超 大连理工大学 电子信息与电气工程学部 fjchao@mail.dlut.edu.cn 
韩敏* 大连理工大学 电子信息与电气工程学部 minhan@dlut.edu.cn 
中文摘要
      微粒群算法由于进化机制中的随机不确定性, 其稳定性很难进行分析, 所以对微粒群的研究多是根据经验的实际优化模型求解. 针对该问题, 利用鲁棒不确定性理论, 将算法分解为时不变和不确定时变的结构, 减少原有参数固定的假设条件, 从而对引入动态惯性权重的微粒群算法的渐近稳定性进行分析. 在此基础之上, 采用李雅普诺夫方法, 得到基于微粒群参数优化的动态神经网络收敛的充分条件, 自适应调整微粒速度的上下限, 为组合模型的实际应用提供参数选择的理论基础. 最后, 通过仿真实例验证了所给出微粒群算法稳定性条件和基于微粒群优化的动态神经网络收敛条件的有效性.
英文摘要
      Due to the random uncertainty in the particle-swarm optimization algorithm(PSO), the analysis of stability is difficult to be performed. Most of the researchers on PSO solve this problem based on the practical model obtained by experience. Being different, we employ the robust uncertainty theory to decompose the original algorithm into the timeinvariant part and the uncertain time-variant part for reducing the original fixed constraints on parameters, and perform the asymptotic stability analysis by using the PSO algorithm with dynamic inertia weight. By using the Lyapunov method, we obtain the sufficient conditions of stability for the dynamic neural networks based on PSO and the upper and lower bounds of the parameters to be adjusted, providing the theoretical basis for parameter selection. Finally, simulation examples validate the stability conditions and the effectiveness of the proposed dynamic neural networks based on PSO algorithm.