引用本文:王小旭,潘泉,程咏梅,赵春晖,杨峰.中心差分卡尔曼平滑器[J].控制理论与应用,2012,29(3):361~367.[点击复制]
WANG Xiao-xu,PAN Quan,CHENG Yong-mei,ZHAO Chun-hui,YANG Feng.Central difference Kalman smoother[J].Control Theory and Technology,2012,29(3):361~367.[点击复制]
中心差分卡尔曼平滑器
Central difference Kalman smoother
摘要点击 3309  全文点击 1877  投稿时间:2011-01-18  修订日期:2011-04-25
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2012.3.CCTA110094
  2012,29(3):361-367
中文关键词  非线性离散系统  中心差分卡尔曼平滑器  最小方差估计  中心差分变换
英文关键词  nonlinear discrete-time systems  central difference Kalman smoother  minimum mean square error estimation  central difference transformation
基金项目  国家自然科学基金重点资助项目(61135001); 国家自然科学基金资助项目(61075029, 61074179, 61074155); 中国博士后科学基金资助项目(20110491692).
作者单位E-mail
王小旭* 西北工业大学 自动化学院 woyaofly1982@163.com 
潘泉 西北工业大学 自动化学院  
程咏梅 西北工业大学 自动化学院  
赵春晖 西北工业大学 自动化学院  
杨峰 西北工业大学 自动化学院  
中文摘要
      针对一类非线性离散系统的状态平滑问题, 本文设计了一种中心差分卡尔曼平滑器(CDKS). 文中基于最小方差估计准则, 详细推导了非线性系统的状态最优平滑递推公式, 并采用中心差分变换来近似计算状态的后验均值和协方差. 相比于传统中心差分卡尔曼滤波器(CDKF), 所设计的CDKS算法有效提高了非线性状态的估计精度, 拓展了中心差分变换的应用范围. 仿真实例验证了所提出平滑器的可行性和有效性.
英文摘要
      A central difference Kalman smoother (CDKS) is designed to solve the nonlinear state-smoothing problem for a class of nonlinear discrete-time systems. Optimal smoothing recursive formulas for estimating nonlinear system states are derived on the basis of minimum mean-square-error estimation; and the central difference transformation is used to calculate the posterior mean and covariance of nonlinear states. Compared with the standard central difference Kalman filter (CDKF), the proposed CDKS effectively improves the estimation precision of the nonlinear system states, and extends the applications of the central difference transformation. Simulations example shows the feasibility and effectiveness of the proposed smoother.