引用本文:王林泽,高艳峰,李子鸣.基于新蝶状模型的混沌控制及其应用研究[J].控制理论与应用,2012,29(7):915~920.[点击复制]
WANG Lin-ze,GAO Yan-feng,LI Zi-ming.Chaos control and its application based on novel butterfly-shaped model[J].Control Theory and Technology,2012,29(7):915~920.[点击复制]
基于新蝶状模型的混沌控制及其应用研究
Chaos control and its application based on novel butterfly-shaped model
摘要点击 2351  全文点击 2410  投稿时间:2011-05-19  修订日期:2011-10-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2012.7.CCTA110574
  2012,29(7):915-920
中文关键词  NBS模型  Lyapunov指数  分段控制  信号检测
英文关键词  NBS model  Lyapunov exponent  segment control  signal detection
基金项目  国家自然科学基金资助项目(50875070).
作者单位E-mail
王林泽 杭州电子科技大学 计算机学院 计算机应用技术研究所 aozhwlz@yahoo.com 
高艳峰* 杭州电子科技大学 计算机学院 计算机应用技术研究所 gyf2692@126.com 
李子鸣 杭州电子科技大学 计算机学院 计算机应用技术研究所  
中文摘要
      针对将混沌技术应用于微弱信号检测的问题, 本文提出了一种基于新蝶状(novel butterfly-shaped, NBS)模型的新的混沌控制方法, 并将该模型应用于微弱信号检测. 首先利用Lyapunov指数谱, 结合数值仿真确定系统各个周期态的参数范围, 然后根据参数周期微扰法, 对扰动参数引入分段控制机制, 构建一个受控系统, 计算出系统处于特定周期态的参数范围, 最后在该范围内选择适当的参数值, 即可把系统稳定到所期望的周期轨道上. 这种改进策略不需要计算周期激励信号幅值的精确解, 大大简化计算的步骤, 提高计算效率, 控制结构简单, 易于实现, 且可以应用于微弱呼吸信号的检测. 仿真结果表明了该方法的有效性.
英文摘要
      To apply the chaos technology to weak-signal detection, we propose a new chaotic control method for weaksignal detection based on the Novel butterfly-shaped (NBS) model. Lyapunov exponential spectrum and numerical simulations are adopted to determine the parameter ranges in different periodic system states. According to the perturbation method for periodic parameters, we introduce the segment control mechanism to the perturbed parameters in constructing the controller. The system parameter range is then calculated in a particular periodical state. The appropriate parameter value is selected in this range; thus, the system is stabilized on the expected periodic orbits. This improved strategy needn’t calculate the exact solution of the periodic excitation signal’s amplitude, reducing the number of calculation steps greatly and increasing the calculation efficiency significantly. In addition, this method is characterized by its simple control structure and easy implementation. It can also be used in the detection of weak breath signal. Simulation results of the NBS system indicate the effectiveness of the proposed method.