引用本文: | 琚宏昌,李红远.一种复非线性系统的动力学特性和同步分析[J].控制理论与应用,2012,29(9):1181~1185.[点击复制] |
QU Hong-chang,LI Hong-yuan.Dynamical properties and synchronization analysis for a complex nonlinear systems[J].Control Theory and Technology,2012,29(9):1181~1185.[点击复制] |
|
一种复非线性系统的动力学特性和同步分析 |
Dynamical properties and synchronization analysis for a complex nonlinear systems |
摘要点击 2269 全文点击 1495 投稿时间:2011-07-10 修订日期:2012-01-07 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/j.issn.1000-8152.2012.9.CCTA110792 |
2012,29(9):1181-1185 |
中文关键词 混沌 吸引子 同步 主动控制 平衡和稳定性 |
英文关键词 chaos attractor synchronization active control equilibria of stability |
基金项目 广西教育厅自然科学基金资助项目(200911MS115, 201010LX215). |
|
中文摘要 |
本文介绍一种新复非线性系统并研究它的动力学特性(包括不变量、耗散度、平衡和稳定性、Lyapunov指数、混沌行为、混沌吸引子), 以及该系统产生混沌的必要条件, 发现在一定参数条件下, 系统存在2个或4个螺线形混沌吸引子, 通过研究驱动系统和响应系统的关系, 导出了混沌同步的控制函数显式表达式. Lyapunov函数分析证明, 系统误差是渐近稳定的, 控制函数可以使主动系统和响应系统完全同步. |
英文摘要 |
This paper introduces a new complex nonlinear system and studies their dynamic properties including the invariance, dissipativity, equilibria of stability, Lyapunov exponents, chaotic behaviors, chaotic attractors, along with necessary conditions for this system to generate a chaos. It is found that there are 2 or 4-scroll chaotic attractors for certain values of system parameters. Chaos synchronization of these attractors is studied via the active control, and explicit expressions for control functions to achieve chaos synchronization are derived. By using Lyapunov function, we prove that the error system is asymptotically stable, and the control function can completely synchronize both the active system and the response system. |
|
|
|
|
|