引用本文: | 吴亚丽,靳笑一,刘格.链式多种群多智能体进化算法[J].控制理论与应用,2013,30(1):37~53.[点击复制] |
WU Ya-li,JIN Xiao-yi,LIU Ge.Chainlike multi-population multi-agent evolutionary algorithm[J].Control Theory and Technology,2013,30(1):37~53.[点击复制] |
|
链式多种群多智能体进化算法 |
Chainlike multi-population multi-agent evolutionary algorithm |
摘要点击 3779 全文点击 1713 投稿时间:2011-11-02 修订日期:2012-10-05 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2013.11238 |
2013,30(1):37-53 |
中文关键词 多种群 链式结构 多智能体进化算法 |
英文关键词 multi-population chainlike structure multi-agent evolutionary algorithm |
基金项目 陕西省自然科学基金资助项目(2010JQ8006); 陕西省教育厅科学研究计划资助项目(2010JK711); 国家基金资助项目(61172123). |
|
中文摘要 |
将多种群的进化方式和链式结构的动态邻域引入到多智能体进化算法中, 提出了一种链式多种群多智能体进化算法. 算法设置了多种群交互的演化结构. 各种群中的智能体通过与其动态邻域智能体的竞争、合作及自学习操作来增加自身的能量; 动态邻域的链式结构提高了算法的效率、降低了计算复杂度; 多个种群之间的信息定期以一定的方式进行交互, 增强了种群的多样性, 减小了算法陷入局部最优的机率. 理论分析和多个测试函数的仿真结果均表明: 链式多种群多智能体进化算法在求解高维优化问题上具有很好的性能. |
英文摘要 |
We propose a novel chainlike multi-population multi-agent evolutionary algorithm which combines the dynamic neighborhood environment chainlike structure with the evolutionary framework of multi-population. This algorithm provides the evolution structure for multi-populations interaction. Agents in the population increase their own energy by competition, cooperation and self-study with its dynamic neighborhood agents. The chainlike structure improves the efficiency of algorithms and reduces the computational complexity. The interaction of information among various populations in a regular period of time improves the diversity of the population and decreases the possibility of sticking at local optima. Theoretical analysis and simulation of multiple test functions show that the new algorithm is very good for handling high-dimension optimization problems. |