引用本文:张蕾,张爱民,韩九强,张杭.基于系统浸入和流形不变自适应方法的静止无功补偿器非线性鲁棒自适应控制方法[J].控制理论与应用,2013,30(1):1~7.[点击复制]
ZHANG Lei,ZHANG Ai-min,HAN Jiu-qiang,ZHANG Hang.Static var-compensator nonlinear robust adaptive control method based on system immersion and manifold invariant methodology[J].Control Theory and Technology,2013,30(1):1~7.[点击复制]
基于系统浸入和流形不变自适应方法的静止无功补偿器非线性鲁棒自适应控制方法
Static var-compensator nonlinear robust adaptive control method based on system immersion and manifold invariant methodology
摘要点击 3112  全文点击 3532  投稿时间:2012-01-18  修订日期:2012-09-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.20062
  2013,30(1):1-7
中文关键词  系统浸入和流形不变  L2--增益抑制  静止无功补偿器  输电系统
英文关键词  system immersion and manifold invariant  L-two gain restraint  static var-compensator  power transmission system
基金项目  国家自然科学基金资助项目(51177126); 陕西省重大科技创新基金资助项目(2008ZKC01¡09).
作者单位E-mail
张蕾* 西安交通大学 电子与信息工程学院 zhang.lei.724@stu.xjtu.edu.cn 
张爱民 西安交通大学 电子与信息工程学院  
韩九强 西安交通大学 电子与信息工程学院  
张杭 西安交通大学 电气工程学院  
中文摘要
      本文提出一种将系统浸入和流形不变(I&I)自适应控制方法与L2--增益抑制鲁棒控制方法相结合的静止无功补偿器(SVC)的非线性鲁棒自适应控制方法. 所提方法首先通过参数估计误差和鲁棒控制律的设计, 使得所构造的表示参数估计误差函数的流形不变且吸引, 从而使参数估计误差在这一流形上收敛于零. 然后, 通过所设计的可调参数对参数估计误差的收敛性能进行控制, 以此来保证参数估计器对不确定参数的自适应估计能力. 最后, 采用自适应逆推算法推导鲁棒控制律, 并通过使不确定外部扰动满足从输入到输出的耗散性来保证系统对不确定扰动的鲁棒性. 仿真结果表明, 利用所提方法设计的SVC控制器和参数替换律在参数估计、发电机功角动态响应方面优于传统自适应逆推算法, 从而提高了输电系统的稳定水平.
英文摘要
      We propose a novel static var-compensator (SVC) nonlinear robust adaptive control scheme based on system immersion and manifold invariant (I&I) adaptive method as well as the L-two gain restraint robust method. Firstly, a manifold that denotes the parameter estimation error is made invariant and attractive by the proposed estimation error and the robust control law. Thus the estimation error will converge to zero on this manifold. Then, an adjustable parameter is designed to control the convergence performance of the estimation error. Finally, the robust control law is deduced by adaptive backstepping. The robustness of the control system is guaranteed by the reduction of the disturbances from input to the regulated output. The simulation shows that for the estimation of the parameter and the dynamic response of the generator rotor angle, the proposed controller and the parameter update law are superior to the classical adaptive backstepping. Thus the stability of the power system is improved.