引用本文:左斌,李静.控制增益未知的多变量极值搜索系统神经网络自适应协同控制[J].控制理论与应用,2013,30(4):405~416.[点击复制]
ZUO Bin,LI Jing.Neural network adaptive synergetic control for multivariable extremum seeking system with unknown control gain[J].Control Theory and Technology,2013,30(4):405~416.[点击复制]
控制增益未知的多变量极值搜索系统神经网络自适应协同控制
Neural network adaptive synergetic control for multivariable extremum seeking system with unknown control gain
摘要点击 3050  全文点击 2855  投稿时间:2012-02-26  修订日期:2012-12-20
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.20149
  2013,30(4):405-416
中文关键词  多变量极值搜索系统  协同控制  Nussbaum增益  神经网络  自适应控制
英文关键词  multivariable extremum-seeking system  synergetic control  Nussbaum gain  neural network  adaptive control
基金项目  国家自然科学基金资助项目(60674090); 国家高技术研究发展计划资助项目(2010AAJ140); 学院青年科研基金资助项目(HYQN201111).
作者单位E-mail
左斌* 海军航空工程学院 控制工程系 zuobin97117@163.com 
李静 海军航空工程学院 战略导弹工程系
北京图形研究所 
 
中文摘要
      针对一类控制增益未知的多变量极值搜索系统, 提出了一种神经网络自适应协同控制方法. 该方法利用协同控制实现状态变量之间的协同收敛, 并确保对系统内部参数扰动和外界干扰具有不变性; 以极值搜索控制方法得到的搜寻变量作为输入量, 设计多层神经网络逼近状态变量的极值变化率和未知的变量与函数; 采用Nussbaum函数解决系统控制增益未知的问题; 同时运用自适应参数抵消神经网络逼近误差的影响. 稳定性分析证明了系统的状态跟踪误差、输出量与其极值之间的误差、极值搜索变量的跟踪误差以及神经网络各参数的估计误差均指数收敛至原点的一个有界邻域. 理论分析与仿真结果验证了该方法的有效性.
英文摘要
      In the proposed synergetic control, the synergetic convergence of states can be realized, and the invariance against the system parameter variation and external perturbation can also be achieved. By using the search variables from the extremum-seeking control as the inputs, multilayer neural networks (MNN) are applied to approximate the differential of the state extrema as well as unknown parameters and functions. The problem of the unknown control gain is well solved by using Nussbaum gain function. At the same time, an adaptive parameter is adopted to compensate for the influence of MNN approximation errors. The stability analysis shows that tracking errors of states, errors between the output and its extrema, tracking errors of search variables, and estimation errors of MNN parameters, all converge exponentially to a small neighborhood of the origin by appropriately choosing design parameters. Theoretical analysis and simulation results show the effectiveness of the proposed control method.