引用本文: | 李军军,黄有方,杨斌.交替捕食的粒子群优化算法及其粒子轨迹收敛性分析[J].控制理论与应用,2013,30(7):850~855.[点击复制] |
LI Jun-jun,HUANG You-fang,YANG Bin.Alternately preying particle swarm optimization algorithm and convergence analysis of its particle trajectories[J].Control Theory and Technology,2013,30(7):850~855.[点击复制] |
|
交替捕食的粒子群优化算法及其粒子轨迹收敛性分析 |
Alternately preying particle swarm optimization algorithm and convergence analysis of its particle trajectories |
摘要点击 3072 全文点击 2659 投稿时间:2012-06-22 修订日期:2013-02-22 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2013.20705 |
2013,30(7):850-855 |
中文关键词 粒子群优化 交替 捕食者 猎物 收敛性分析 |
英文关键词 particle swarm optimization alternately predator prey convergence analysis |
基金项目 国家自然科学基金资助项目(51279099); 上海市科学技术委员会基金资助项目(12ZR1412500); 上海市教委科研创新基金资助重点项目(13ZZ124); 上海市教育委员会和上海市教育发展基金会“曙光计划”基金资助项目(12SG40). |
|
中文摘要 |
为避免算法陷入局部极值, 在捕食者–猎物协同进化机制基础上, 提出了一种交替捕食的粒子群优化算法(APPSO). 对该算法迭代过程进行了分析, 给出并证明了粒子运动轨迹收敛的充分条件. 为使粒子运动轨迹可靠收敛, 构建了一种参数设置方法. 通过迭代矩阵谱半径计算、SQRT序列采样, 对该算法的粒子轨迹收敛速度进行了分析. 基准测试函数仿真结果表明, 交替捕食的PSO算法具有较佳的搜索性能. |
英文摘要 |
To avoid getting into local extremum, we put forward an alternately preying particle swarm optimization algorithm (APPSO) on the basis of predator-prey coevolution. The iteration process of APPSO is analyzed. The sufficient condition for the convergence of particle trajectories is proposed and proved. A parameter setting method is developed to make the particles motion trajectories reliably convergent. The convergence rate of motion trajectories in APPSO is analyzed based on the iteration matrix spectral radius and SQRT sequence. Simulation results of benchmark functions validate the correctness and efficiency of the proposed method. |