引用本文:翁永鹏,高宪文,刘昕明.非仿射非线性离散系统的数据驱动二阶滑模解耦控制[J].控制理论与应用,2014,31(3):309~318.[点击复制]
WENG Yong-peng,Gao Xian-wen,LIU Xin-ming.Data-driven second-order sliding-mode decoupling control for non-affine nonlinear discrete-time system[J].Control Theory and Technology,2014,31(3):309~318.[点击复制]
非仿射非线性离散系统的数据驱动二阶滑模解耦控制
Data-driven second-order sliding-mode decoupling control for non-affine nonlinear discrete-time system
摘要点击 2904  全文点击 2032  投稿时间:2013-05-23  修订日期:2013-10-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2014.30521
  2014,31(3):309-318
中文关键词  数据驱动  二阶离散滑模变结构控制  离散扩张状态观测器  解耦  鲁棒性
英文关键词  data-driven  discrete second-order sliding-mode control  discrete extended state observer  decoupling  robustness
基金项目  国家自然科学基金重点资助项目(61034005).
作者单位E-mail
翁永鹏 东北大学 396657951@qq.com 
高宪文* 东北大学 gaoxianwen@ise.neu.edu.cn 
刘昕明 东北大学  
中文摘要
      针对传统二阶离散滑模变结构控制方法很难应用于模型未知系统的问题, 提出了一种数据驱动二阶滑模 解耦控制算法. 该控制算法采用数据驱动的策略, 运用系统的I/O数据, 实时计算二阶离散滑模控制(2–DSMC)律. 同 时, 运用观测器的思想, 在控制器设计中引入离散扩张状态观测器(DESO), 在线估计系统各回路间耦合、不确定性 和外部扰动, 进一步实现系统的解耦, 改善控制品质. 最后的理论分析和仿真结果表明, 所提出的方法对于一般带 有扰动和不确定性的非仿射非线性离散多入多出(MIMO)系统具有较好的解耦效果、渐进收敛的稳定性和较强的 鲁棒性.
英文摘要
      A data-driven second-order sliding-mode decoupling control approach is proposed to deal with the varyingstructure control problem of model-unknown systems, which is intractable for the conventional discrete second-order sliding-mode control approaches. By applying a data-driven control strategy, we develop an online discrete second-order sliding-mode control (2–DSMC) law according to the I/O (input/output) data of the system. Furthermore, promoted by the idea of the observer, we introduce a discrete extended state observer (DESO) to the controller design for estimating the couplings between control loops, uncertainties and external disturbances, and then to realize the decoupling control and improve the control performance. Theoretical analysis and simulation results show that the proposed method provides better decoupling effect, higher asymptotic stability and stronger robustness, even for general non-affine nonlinear discrete multi-input multi-output (MIMO) systems with disturbances and uncertainties.