引用本文:邓勇跃,张贵军.基于局部抽象凸支撑面的多模态优化算法[J].控制理论与应用,2014,31(4):458~466.[点击复制]
DENG Yong-yue,ZHANG Gui-jun.Multimodal optimization based on local abstract convexity support hyperplanes[J].Control Theory and Technology,2014,31(4):458~466.[点击复制]
基于局部抽象凸支撑面的多模态优化算法
Multimodal optimization based on local abstract convexity support hyperplanes
摘要点击 4195  全文点击 2062  投稿时间:2013-06-14  修订日期:2013-12-30
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2014.30596
  2014,31(4):458-466
中文关键词  进化算法  抽象凸  支撑向量  多模态优化  下界估计
英文关键词  evolutionary algorithms  abstract convexity  support vector  multimodal optimization  underestimation
基金项目  国家自然科学基金资助项目(61075062, 61379020); 浙江省自然科学基金资助项目(LY13F030008); 浙江省重中之重学科开放基金资助项目(20120811); 杭州市产学研合作资助项目(20131631E31).
作者单位E-mail
邓勇跃 浙江工业大学 信息工程学院 zjykdyy@gmail.com 
张贵军* 浙江工业大学 信息工程学院 zgj@zjut.edu.cn 
中文摘要
      在基本进化算法框架下, 结合抽象凸理论, 提出一种基于局部抽象凸支撑面的多模态优化算法. 首先, 采用模型变换方法将原优化问题转变为单位单纯形约束条件下的严格递增射线凸松弛问题; 其次, 针对新生成个体的邻域信息构建局部抽象凸支撑面, 并利用局部下界知识动态识别种群模态, 从而减少替换误差, 避免出现早熟现象; 最后, 借助支撑面下降方向进一步实现模态内部的局部增强过程. 数值研究表明, 针对给定的绝大部分测试问题, 提出的算法在精度和可靠性指标方面均优于文中给出的其他算法.
英文摘要
      In the framework of basic evolutionary algorithms, a new multimodal optimization algorithm based on local abstract convexity support hyperplanes is proposed by using the abstract convexity theory. Firstly, the original bound constrained optimization problem is converted to an increasing convex along rays (ICAR) relaxed problem over unit simplex by using the projection transformation method. Secondly, we construct the underestimate support hypeplanes with the information of trial individual neighborhood and make use of the local lower bound to identify the potential niches dynamically, thus reducing the replacement error and avoiding the premature. Finally, with the aid of descendent direction of support hyperplanes, the detected niches will be enhanced at the same time. Experiments had been performed on several benchmark functions. For most of the benchmark functions, the numerical results show the proposed algorithm is capable to provide better and more consistent performance over the existing multimodal algorithms both in accuracy and reliability.